
 
 

A New Parallel Algorithm to Solve the Near-
Shortest-Path Problem on Raster Graphs 

 

F. Antonio Medrano and Richard L. Church 
Project 301CR, GeoTrans RP-01-12-01 

January 2012 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Photos courtesy of DOE/NREL 
 

University of California, Santa Barbara 
Department of Geography 

1832 Ellison Hall 
Santa Barbara, CA 93106 
medrano@geog.ucsb.edu 

church@geog.ucsb.edu 



- 2 - 

 
 
 
 
 
 
 

A New Parallel Algorithm to Solve the Near-Shortest-Path 
Problem on Raster Graphs 

 
 

F. Antonio Medrano 
Department of Geography 

University of California at Santa Barbara 
medrano@geog.ucsb.edu 

 
Richard L. Church 

Department of Geography 
University of California at Santa Barbara 

church@geog.ucsb.edu 
 

January 2012 
 
 
 
 
Abstract 
The Near Shortest Path algorithm (Carlyle and Wood 2005) has been identified as being 
effective at generating sets of good route alternatives for developing new infrastructure. While 
the algorithm itself is faster than other shortest path set approaches such as solving the k-th 
shortest path problem, the solution set size and computation time grows exponentially as the 
problem size increases and requires the use of high-performance parallel computing to solve real 
world corridor location problems. We identified a new breadth-first-search parallelization of the 
Near Shortest Path algorithm, although its efficiency was limited by large discrepancies in 
workloads from each processing thread. In an effort to more equally distribute work, we defined 
a metric that can be used to predict workloads from different parts of the breadth first search tree 
reducing the overall variability of workload between threads. This resulted in much improved 
algorithm performance and parallel computing efficiencies. Future work should focus on refining 
this new approach, and developing guidelines for implementing this method over a variety of 
datasets. 



- 3 - 

Table of Contents 

Introduction 4	
  

Background 4	
  

Raster Graph Data 6	
  

Carlyle & Wood’s Near-Shortest Path Algorithm 8	
  

The Need for Parallelization 11	
  
Characterizing Problem Size Growth 11	
  
Problem Size Conclusions 14	
  

Parallelizing Depth-First Search 14	
  

Analysis of Implementation 16	
  

Distributing Workload 18	
  
Approach #1 – Randomized Task Distribution 18	
  
Approach #2 – Dynamic Centralized Scheduling 19	
  
Approach #3 – Dynamic Work Stealing 19	
  
Approach #4 – Combined Approach 19	
  
Existing Approaches: Conclusions 20	
  

Analysis of Naïve BFS Work Distribution 21	
  

Workload Prediction 22	
  

Threshold BFS Expansion 24	
  

Tree Trimming BFS: Computational Results 26	
  

Conclusions 27	
  

Acknowledgements 28	
  

Bibliography 29	
  

 
  



- 4 - 

Introduction 
 
The shortest path problem has been defined on a network and on a continuous space domain. For 
example, one might want to find the shortest route on a road network or the least time sailing 
route across an ocean given currents and wind conditions. The problem that we address here 
involves the use of a network. The network for the purposes of this research represents all 
possible directions for an electrical transmission corridor as it traverses its way across the 
landscape. This network is described in more detail below. The main objective is to find corridor 
routes that are Pareto optimal or nearly Pareto optimal, given several incommensurate, 
competing objectives. To do this requires finding the shortest path along with paths that are close 
to being the shortest, in order to generate, characterize, and compare all competitive paths. One 
of the ways to meet this objective is to use a near shortest path algorithm. 
 
In this report we describe what we believe is the fastest near shortest path program that has been 
developed to date. We then provide data generated from a test of this algorithm and show that for 
even small networks, the number of alternative routes can be exceedingly large. As the execution 
time of the algorithm is, in part, a function of the number of alternate routes generated, the 
execution time can be quite large as well. The main alternative to increasing the speed of such an 
algorithm is to develop a parallel algorithm for use on a computer with multiple processors. This 
report addresses specific issues in developing a parallelized near shortest path algorithm, with the 
objective of maximizing parallel efficiency.  
 
In the next section we provide a short history in the development of methods to solve the shortest 
path problem and near short path problems. We then describe in more detail the near shortest 
path algorithm of Carlyle and Woods. This algorithm has been shown to be the most efficient 
method developed to date to solve for near shortest paths. We then discuss some details 
concerning the network on which a corridor transmission location problem is defined. Whereas 
road networks have 2.6 to 3.3 arcs per network node, transmission planning networks require 16 
to 32 arcs per network node. This level of arc density is required to address on-the-ground 
variations in topography, costs, and impacts. Unfortunately, this level of arc density increases the 
overall work load of the near shortest path algorithm and the time it takes to complete its task. 
We provide details associated with the nature of this problem and discuss the needs to develop a 
parallelized version of the near shortest path problem. We show that a straightforward 
implementation of parallelizing this algorithm results in a very low level of parallel efficiency. 
We then discuss methods that have been developed as a part of this project to increase this 
efficiency and show that there is a promising approach to making a substantial improvement in 
efficiency when used on a massively parallel machine.  
 
 
Background 
 
Shortest path algorithms defined for network problems have been an active area of 
computational research since the 50’s, with the shortest path problem initially being formulated 
as a linear programming program by Orden as a special form of a transshipment problem and 
then by Dantzig as a direct path problem (Orden 1956, Dantzig 1957). Although Orden published 
the earliest formal paper, Dantzig wrote about the shortest path problem as one of several 



- 5 - 

problems that he presented at a conference in 1955. The work of Dantzig and Orden led to a 
number of different approaches being proposed in the literature. These included the Bellman-
Ford Algorithm (Ford 1956, Bellman 1958) and Dijkstra’s Algorithm (Dijkstra 1959, Moore 
1959). 
 
The K-th Shortest Path (KSP) Problem is an extension of the shortest path problem on a network, 
where the goal is to return the 1st, 2nd, 3rd, …, kth shortest paths that exist from a prespecified  
origin to a prespecified destination. Initially formulated by Bock, Kantner, and Haynes (1957), 
good algorithms for solving this problem (for loopless paths) have been developed by Hoffman 
and Pavley (1959), Yen (1971), and Katoh et al. (1982). A review of this literature can be found 
in Medrano and Church (2011). 
 
The Near Shortest Path (NSP) Problem is a slight variation of the KSP problem, initially 
formulated by Byers and Waterman (1984). Unlike the KSP, which returns a ranked list of the k 
shortest paths on the network (between a specified origin-destination pair), the NSP returns all 
distinct paths on the network between a specified origin and destination longer than the shortest 
path within a prescribed percentage threshold, ε, expressed as a decimal. In other words, if the 
shortest path has length Lsp, then the NSP returns all paths of length Lsp (1+ ε). One key 
difference between the NSP and the KSP is that before running the NSP, it is not known how 
many paths the NSP algorithm will find. Whereas the KSP generates paths in order of length, 
paths are returned by the NSP simply as they are found. 
 
Carlyle and Wood (2005) developed an algorithm to quickly solve the NSP for loopless paths. 
This algorithm is based on a depth-first-search (DFS) routine, which adds nodes that belong to a 
NSP to a stack data structure until the destination is reached. To find the next NSP, nodes are 
popped from the stack until a deviation is found which results in a different NSP. This continues 
until all NSPs have been found. While this algorithm has an exponential worst-case complexity, 
this only occurs in the most pathological of examples. Carlyle and Woods’ computational results 
on both random graphs and road networks found that this method could find sets of NSPs very 
quickly, and by sorting the output, this method also solved the KSP problem faster than previous 
KSP algorithms. 
 
While the NSP algorithm is quite fast, the fundamental combinatorial nature of the problem 
makes solving for sets of NSPs on large graph sizes or for a large threshold parameter (ε) a 
difficult task. On a given graph, as ε increases linearly, the number of NSPs found tend to 
increase exponentially. Also, as the size of the graph increases, the number of NSPs returned will 
increase factorially. Even with efficient algorithms, the problem quickly grows to a scale that is 
difficult to solve with a single computer. The only practical approach to solve a large NSP 
problem in a reasonable amount of time is to employ parallel computing techniques, which is the 
subject of this report  
 
In the next section of this report, we provide details that define the network used in corridor 
planning. This is generally based on the use of raster or gridded data. After the basic network is 
described, we then describe the NSP algorithm of Carlyle and Wood. We follow that description 
with an example application which demonstrates the need for developing a parallel algorithmic 



- 6 - 

approach. The remaining sections of this report discuss a simple, naïve parallel approach along 
with a more sophisticated method that has been developed to increase parallel efficiency.  
 
 
Raster Graph Data 
 
The efficiencies of graph algorithms depend on the number of nodes n and the number of 
edges/arcs m in the network. Just about all networks contain more arcs than nodes, but a sparse 
network will contain fewer arcs as compared to a dense network. For road networks, the arc to 
node ratio (m/n) is typically in the range of 2.6−3.3. This is considered a sparse network.  
 
Terrain is typically modeled as a raster network, with each pixel of the topological terrain image 
representing a node on the network. Neighboring nodes are then connected with arcs where each 
arc is given a cost that represents a weighted sum of impacts and costs associated with routing a 
corridor at that location. For example, the ArcGIS system assumes a network node at the center 
of each raster cell. Then arcs are added which connect each node to its eight nearest neighboring 
cells (nodes), four in the orthogonal directions and four in the diagonal directions, which results 
in a more dense network of m/n = 4 (while each node has 8 arcs emanating, every arc connects to 
two nodes). Goodchild (1977) showed that significant geometric errors might arise if you don’t 
also include knight’s moves on a raster representation. While error is reduced, it also doubles the 
arc-to-node ratio to a more dense value of 8. In the extreme case, every node in a network may 
be connected to every other node, known as a complete graph. In this instance, maximum density 
is achieved with m = (n2–n)/2 undirected arcs, so the arc-node ratio is m/n = (n–1)/2 = O(n). 
 
Huber and Church (1985) use a metric called R to differentiate between the types of moves 
allowed on a raster network. R = 0 is used to define the case when only orthogonal moves are 
allowed, R = 1 is used to define the case where diagonal moves can be used in addition to 
orthogonal moves, and R = 2 is used to define the case when “knight’s moves” are included in 
addition to R = 1 moves. One can think of the value of R representing a buffer width of cells 
surrounding a target cell. For R = 1, case b in Figure 1, arcs are directed towards all cells in the 
ring of cells about the center cell. For R = 2, arcs are defined in such a manner that a direct 
straight line path from a cell to all neighbors in a 2 cell buffer ring about a cell are defined (see 
Figure 1c). Moving from one level R = k to subsequent level R = k+1 requires a doubling of the 
needed arcs. 

 
 

Figure 1 - Interconnectivity metric on raster graphs. (a) R = 0, (b) R = 1, (c) R = 2.          
Diagram is from Zhang and Armstrong (2008). 

!"! #$%$&'( )*+,-'&./ 0$1$*,2/$%& '% 34#5647
!"#$%&' "&("&)&*+,+-#* -) , ."-+-.,% -))/& -* 01 2&)-3*4 5-*.& -+ ,66&.+) +7& (&"6#"',*.&
#6 , 01 )-3*-6-.,*+%89 2&)-3*&") '/)+ /)& , "&("&)&*+,+-#*,% 6#"' +7,+ -) )/-+,$%& 6#" ,
)(&.-6-. ("#$%&'4 :* +7& ;<01=<> '&+7#2 , 6&,)-$%& .#""-2#" ,%-3*'&*+9 "&("&?
)&*+&2 ,) , .7"#'#)#'&9 -) , .#*+-*/#/) )&@/&*.& #6 (#)-+-A& -*+&3&") B3&*&)CD &,.7
-*+&3&" "&("&)&*+) +7& := #6 *#2&) +7"#/37 E7-.7 +7& .#""-2#" (,))&)4 F,.7 := "&6&") +#
+7& %#.,+-#* #6 , .#""&)(#*2-*3 .&%% #* , ",)+&" )/"6,.&4 G#" &H,'(%&9 -* , !! ! 3"-29
*#2& IJ "&6&") +# +7& .&%% %#.,+&2 ,+ +7& 6#/"+7 "#E ,*2 +7-"2 .#%/'* /)-*3 "#E?',K#"
#"2&"-*34 L,"-,$%&?%&*3+7 .7"#'#)#'&) ,*2 +7&-" 3&*&) ,"& /)&2 +# &*.#2& +7& ("#$?
%&'4 FA&"8 A,%-2 .7"#'#)#'& )+,"+) E-+7 ,* #"-3-* .&%%9 &*2) E-+7 , 2&)+-*,+-#* .&%%9
,*2 .#*+,-*) , )&+ #6 .#**&.+-*3 %-*M) +7,+ )+"&+.7&) 6"#' +7& #"-3-* +# +7& 2&)+-*,+-#*
B6-3/"& NC4 1 A,%-2 .7"#'#)#'& '/)+ *#+ 7,A& 2/(%-.,+& *#2&) -* +7& )&@/&*.&9 ,) +7-)
E#/%2 -*2-.,+& , .-"./%," (,+74

O4O4I !"#$%&'(") ()('(&%(*&'(")
1* -*-+-,% (#(/%,+-#* -) 3&*&",+&2 ,+ +7& $&3-**-*3 #6 +7& ;<01=<> ("#.&2/"&4
P7"&& +&.7*-@/&) ,"& /)&2 +# ."&,+& , 3"#/( #6 -*2-A-2/,%) -* +7& (#(/%,+-#*Q ",*2#'9
7&/"-)+-.9 ,*2 )&&2-*3 +7& 01 E-+7 "&)/%+) 6"#' ,* 5!14 P",2-+-#*,%%89 &,.7 -*2-A-2/,%
-* , 01 -) -*-+-,%-R&2 ",*2#'%84 :* +7-) .,)& +7& -*-+-,+-#* ("#.&2/"& )+,"+) E-+7 ,*
#"-3-* ,*2 ",*2#'%8 .7##)&) , A,%-2 .&%% $,)&2 #* +7& .#**&.+-A-+8 -*6#"',+-#* #6 +7&
*&+E#"M4 P7& &*.#2-*3 ("#.&)) M&&() )&%&.+-*3 , A,%-2 .&%% +7,+ .,* $& .#**&.+&2 +#
+7& %,)+ *#2& #6 +7& ./""&*+ "#/+& ,*2 7,) *#+ $&&* -*.%/2&2 -* -+ )# 6,"9 /*+-% ,
2&)+-*,+-#* -) "&,.7&24 1 ",*2#' E,%M9 7#E&A&"9 #6+&* %&,2) +# (##" (&"6#"',*.&
B&3 &H+"&'&%8 %#*3 .7"#'#)#'&)C E7&* ,((%-&2 +# %,"3&" 2,+,)&+)4 :* "&)(#*)&9 ,
7&/"-)+-. '&+7#29 .,%%&2 , S2-"&.+-#*,%%8 $-,)&2 E,%MT9 7,) $&&* 2&)-3*&24 U&%%) -* +7&
2-"&.+-#* %&,2-*3 6"#' +7& #"-3-* +#E,"2) +7& 2&)+-*,+-#* 7,A& , 7-37&" ("#$,$-%-+8 +#

8'+9-$ :" V#2& -*2-.&) -* , !! ! 3"-2 ,*2 , A,%-2 "#/+&Q WX Y I Y Z Y J Y IZ Y IJ Y ZZ Y ZO Y Z[\4

B,C B$C B.C

8'+9-$ ;" V&+E#"M 2&(-.+-#* #* , ",)+&"Q B,C "##MT) .,)&9 B$C @/&&*T) .,)& B.C M*-37+T) .,)& (%/)
@/&&*T) .,)&4

IN] ^ _7,*39 ; ! 1"')+"#*3



- 7 - 

Goodchild showed that moving from R = 0 to R = 1 improves accuracy of distance measurement 
by 30%, while moving from R = 1 to R = 2 improves accuracy an additional 7%. Higher order R 
values can be used, adding even more arcs to the network, but Huber and Church found that R = 
2 provides the most satisfactory trade-off between accuracy and computational burden. This is 
the metric we used in our research. 
 
Thus far, we have tested our implementation of the NSP algorithm on the following sample data 
networks: 
 

1) 20 x 20 manually fabricated raster. This network contains 400 nodes and 2,850 arcs using 
an R = 2 arc set and was originally used by Huber and Church. 

2) 80 x 80 subset of the Maryland Automated Geographic Information System (MAGI) 
database. This network contains 6,400 nodes and 49,770 arcs using an R = 2 arc set. 

 
Both of these data sets have been used by Huber and Church (1985), Lombard and Church 
(1993), and by Church, Loban and Lombard (1992). 
 
The program that has been developed as a part of this research project will accept networks of 
any size as a raster of node costs in the standard .asc file format, and generate the arcs for an R = 
0, 1, or 2 system. 
 
  



- 8 - 

Carlyle & Wood’s Near-Shortest Path Algorithm 
 
The Near-Shortest Path (NSP) problem is a slight variation on the K-th Shortest Path (KSP) 
problem. Unlike the KSP, which finds a set of K paths ranked in order of length, the NSP finds 
all paths less than a specified length. More specifically, near shortest paths are defined as paths 
whose lengths are within a factor of (1 + ε) of the shortest path length for some user-specified ε ≥ 
0, an acceptable percentage increase from the shortest route distance between a given origin and 
destination. The number of such near-short paths is not known in advance and can be identified 
only when such a search has been completed. The first to formulate this problem were Byers and 
Waterman (1984).  
 
Carlyle and Wood (2005) modified the Byers and Waterman algorithm to constrain the results to 
only loopless near-shortest paths. They compared runtimes of their KSP algorithm to that of the 
Katoh et al. (1982) algorithm as implemented by Hadjiconstantinou and Christofides (1999), and 
declared theirs to be far superior despite using different networks and faster computers for their 
study. While no other experiments have been published that compare Carlyle and Wood’s 
algorithm to other k-shortest path algorithms, in another publication by Carlyle, Royset and 
Wood (Carlyle et al. 2008), they argue that “enumerating paths in order of length requires undue 
computational effort, storage and algorithmic complexity”, and if it is not necessary to use KSP, 
then the NSP is far quicker. 
 
In their 2005 paper, Carlyle and Wood present two different algorithms for finding loopless 
NSPs. The first one, ANSPR0 (Algorithm Near Shortest Paths Restricted 0), is directly based on 
the Byers and Waterman method, except for a slight modification to output only loopless paths. 
While it has an exponential worst-case complexity, it takes a pathological example to create this 
slow a scenario. Otherwise, the algorithm runs extremely fast. Their other algorithm, ANSPR1 
(Algorithm Near Shortest Paths Restricted 1), has a better worst-case complexity, but when 
implemented it tends to run slower than ANSPR0. Combined with a binary search tree, they 
showed that the ANSPR1 algorithm could be modified to solve the KSP problem with worst case 
complexity of O(Kn c(n,m) (log n + log cmax)), where c(n,m) is the cost of running Dijkstra and 
cmax is the largest edge length. They called this modified version AKSPR1, and when 
implemented it ran much faster than the Hadjiconstantinou and Christofides implementation of 
the Katoh et al. KSP algorithm. 
 
In the following pages, we present a verbal description, as well as a pseudo code description of 
the ANSPR0 algorithm. The general idea of ANSPR0 is that it uses depth first search to find all 
paths of length ≤ D on the network, where D = (1 + ε) × Lsp, and Lsp is the shortest path length. 
First it solves the reverse shortest path tree (from destination to origin) to acquire the shortest 
path cost from any node to the destination, t. This is the only time that a shortest path algorithm 
is solved. It then builds NSP’s by adding nodes to a first-in last-out stack, theStack. When a 
vertex v is added to theStack, its τ(v) is set to 1, denoting that it is in the stack. This prevents it 
from being added again to the stack, satisfying the loopless criteria. After initializing by pushing 
the starting node, s, onto theStack, it peeks at the top node, u, in the stack (in the first case, the 
just placed starting node), and starts iterating through all edges (u, v) from that node. For each 
edge, it evaluates the sum of the path cost of the path in the stack up to that point, L(u), plus the 
arc cost c(u, v), plus the shortest path cost (acquired from the shortest path tree) from the arc’s 



- 9 - 

end node d′(v), and checks if it’s less than the max acceptable path cost D. If L(u) + c(u,v) + d′(v) 
≤ D and τ(v) = 0 (meaning v is not in the stack yet), then v is added to the stack, L(v) and τ(v) are 
updated, and the process repeats. This continues until the stack path reaches the destination node 
t. When that occurs, the path is saved, and the top node in theStack is popped (removed). The 
new top node is “peeked”, and the remaining arcs that did not get evaluated after finding the first 
one that fit the ≤ D threshold are evaluated until one meets the criteria. If no other arcs meet the 
≤ D requirement, then the top node in theStack is again popped, and the process is repeated until 
a ≤ D arc is found. The path then moves forward again until reaching the destination, then again 
backtracks, and so on, until all possible paths that are ≤ D have been found. 
 
This approach is very efficient because the depth-first approach consists of fast 
addition/comparison operations, and never has to repeat any shortest path calculations in the 
process of generating paths. Also, unlike Yen’s KSP Algorithm or Katoh’s KSP Algorithm, not 
having to store a list of candidate path lengths to determine the next-shortest path length saves 
time and memory. Additionally, we can further optimize the algorithm by trimming unnecessary 
nodes from the graph in the following manner. 
 
Before initiating the depth first search, Carlyle and Wood use Dijkstra’s algorithm, starting at the 
destination node, to determine the shortest path length d′(v) from each node to the destination. 
By also solving Dijkstra’s algorithm in the forward direction (from the origin node), you can 
solve the shortest path length from the origin to each node, which we’ll call d′′(v). With the 
information from both shortest path trees, one rooted at the origin and the other rooted at the 
destination, you can now easily determine the shortest path length possible from origin to 
destination if it is constrained to go through a specific node v. For each node, if d′(v) + d′′(v) > D, 
then there cannot exist any NSP that goes through that node v. We can then eliminate that node 
from the network and any arcs connected to that node, and thereby reduce the overall problem 
size and memory requirements and speeding up the algorithm runtime. 
 
Overall, this approach is a very streamlined and efficient method of quickly enumerating a large 
set of paths. 
 
  



- 10 - 

ANSPR0 Algorithm 
 
DESCRIPTION: An algorithm to solve loopless NSP. 
INPUT: A directed graph G = (V, E) in adjacency list format, τ , s, t, c ≥ 0, and ε ≥ 0. 
   “firstEdge(v)” points to the first edge in a linked list of edges directed out of v. 
OUTPUT: All s-t paths (may include loops), whose lengths are within a factor of 1 + ε of being 
shortest. 
{ /* A single shortest-path calculation evaluates all d′(v) in the next step. */ 

for (all v ∈ V ) { d′(v) ← shortest-path distance from v to t; } 
D ← (1 + ε) d′(s); 
for (all v ∈ V) { nextEdge(v) ← firstEdge(v); } 
theStack ← s; L(s) ← 0; 
/* τ(v) denotes whether the vertex v appears on the current subpath. */ 
τ(s) ← 1; 
for (all v ∈ V − s ) { τ (v) ← 0; } 
while( theStack is not empty ) { 

u ← vertex at the top of theStack; 
if( nextEdge(u) ≠ null ) { 

(u, v) ← the edge pointed to by nextEdge(u); 
increment nextEdge(u); 
if( L(u) + c(u,v) + d′(v) ≤ D and τ(v) = 0) { 

if( v = t ) { 
print( theStack ∪ t ); 

} else { 
push v on theStack; 
τ(v) ← τ(v)+1; 
L(v) ← L(u) + c(u, v); 

} 
} 

} else { 
Pop u from theStack; 
τ(u) ← τ(u)−1; 
nextEdge(u) ← firstEdge(u); 

} 
} 

} 
 
 
  



- 11 - 

The Need for Parallelization 
 
Characterizing Problem Size Growth 
 
It is important to first establish the need for a parallelized approach to the NSP algorithm. Before 
we considered any parallelization scheme, we wrote a JAVA implementation of the NSP 
algorithm. We ran tests on both networks (i.e. 20x20 and 80x80 raster defined networks) for 
numerous values of ε to see how the number of paths increased as we increased the threshold 
value ε. Figure 2 displays these results in a linear plot for the 20x20 network, and Figure 3 
displays them on a logarithmic plot. 
 

 
Figure 2 - 20x20 network, number of paths generated by the ANSPR0 vs. epsilon 

 



- 12 - 

 
Figure 3 - 20x20 network, log number of paths generated by ANSPR0 vs. epsilon 

From figure 2, we can see that the Near Shortest Path Algorithm generated nearly 4 billion 
solutions on the 20x20 raster region when the epsilon value was set at 0.10. This means that 
there exist nearly 4 billion paths that had a length that was within 10 percent of optimal path. In 
Figure 3, after an initial ramp-up, the curve flattens out into a straight line, suggesting an 
exponential growth rate in the number of paths generated as a function of epsilon. Eventually, we 
would expect the curve to flatten out as we approach the condition of finding all possible 
combinations of paths, although the range of epsilon values used is not anywhere close to this 
boundary or upper limit. We would expect observed trend to continue for epsilon values of at 
least a couple orders of magnitude higher than the values that we tested. 
 
We ran the same computational experiment for the 80x80 raster data and R=2 network, and 
found similar results. Because the number of paths for each given value of ε is much higher for 
the 80x80 as compared to the 20x20 raster, the range of epsilons used in our 80x80 experiments 
were an order of magnitude smaller than those in our 20x20 experiments. For example, for ε 
=0.005, on the 20x20 data there were 73 near shortest paths, but for the 80x80 there were 
510,343,616 such paths. 
 
Figures 4 and 5 display computation time needed as a function of increasing values of ε on the 
same 20x20 data set.  Figure 4 shows that the time to compute all paths within a threshold 
increases at a rapid rate as ε increases. Figure 5 plots the data on a logarithmic y-axis, and shows 
a straight line trend suggesting that this growth is indeed exponential in character. 
 
 
 



- 13 - 

 
Figure 4 -20x20 network, computation time vs. epsilon 

 
 

 
Figure 5 -20x20 network, log computation time vs. epsilon 

 
 



- 14 - 

Problem Size Conclusions 
 
Generating a set of Near Shortest Paths can be an enormous task and may overwhelm 
computational resources as we increase the network size or increase the value of ε. Generating all 
paths within 0.75% of the shortest path length on the 80x80 network took a new Intel Core i7 
desktop a little over 4 days to solve at a rate of 185,000 paths per second on a serial JAVA 
implementation. While we make no claims that the serial code cannot be further optimized 
(indeed, since running these tests, we have been able to improve our program’s speed by 
approximately 5%), the reality is that even with the best code, generating all paths within 10% of 
the shortest path on a 100 megapixel raster is beyond the reach of any commercial off-the-shelf 
computer available today. To even consider solving such a problem to completion would require 
the use of parallel computing techniques and a large number of processors. 
 
 
Parallelizing Depth-First Search 
 
The remainder of this report discusses two approaches to parallelizing the near shortest path 
algorithm. Prototyping was done using UCSD’s Triton Supercomputer. Triton consists of 256 
gB222X Appro blade nodes, each containing 2 quad-core Intel Nehalem 2.4 GHz processors, 24 
GB of memory, and is capable of a peak processing power of 20 TeraFlops. Our code was 
written in C++ using the MPI extension to communicate between the different processors/nodes.  
 
Our initial technique of converting the NSP algorithm into a parallel algorithm was to begin with 
a breadth-first-search (BFS) on all NSPs emanating from the origin point. This approach 
naturally results in a tree structure, with concurrent paths sharing branches until they deviate, and 
the end nodes of the paths found as the leaves on the trees. The BFS paths are stored in a “trie” 
data structure (Aho et al. 1983, Hadjiconstantinou and Christofides 1999). The BFS runs until 
there are as many leaves on the tree as there are processors available for computation, at which 
point each processor is then tasked with running the DFS NSP algorithm using the leaf as its 
starting point, finding all paths from that point which are less than the threshold length minus the 
path-length to the leaf starting node. 
 
Because we restricted our BFS to only nodes that are guaranteed to have at least one NSP on it, 
and because the number of nodes with NSPs on them varies as a function of the threshold ε, the 
number of leaves at each level of the BFS tree varied also as a function of ε. The chart given in 
Figure 6 plots the number of tree leaves as a function of the number of BFS levels, showing that 
the leaves grow somewhat exponentially per level (as expected). Each curve on this figure is 
associated with a specific value of epsilon. Note we have also listed as a point of reference the 
number of processors employed in the Argonne National Laboratory supercomputer called 
Intrepid. In Figure 7, there is a general flattening of the curves between levels 6 and 8. This is 
due to the presence of a small impenetrable barrier on the 20x20 raster at this distance from the 
origin, showing that the topological features of the data itself have an influence on the rate of 
growth, in addition to the ε parameter. 

 



- 15 - 

 
 

Figure 6 - Leaves in BFS Tree, 20x20 raster, epsilon = 0.05 

 

 
Figure 7 - LOG Leaves in BFS Tree, 20x20 raster, eps = 0.05 

0	
  

50	
  

100	
  

150	
  

200	
  

0	
   2	
   4	
   6	
   8	
   10	
   12	
   14	
   16	
  

Tr
ee
	
  L
ea
ve
s	
  
(i
n	
  
th
ou
sa
nd
s)
	
  

BFS	
  Depth	
  

Leaves	
  in	
  BFS	
  Tree,	
  20x20	
  raster	
  

ANL	
  Processors	
  
eps	
  =	
  0.10	
  
eps	
  =	
  0.075	
  
eps	
  =	
  0.05	
  
eps	
  =	
  0.025	
  

ANL	
  Intrepid	
  has	
  163,840	
  cores	
  

1	
  

10	
  

100	
  

1000	
  

10000	
  

100000	
  

0	
   2	
   4	
   6	
   8	
   10	
   12	
   14	
   16	
  

Tr
ee
	
  L
ea
ve
s	
  

BFS	
  Depth	
  

LOG	
  Leaves	
  in	
  BFS	
  Tree,	
  20x20	
  raster	
  

ANL	
  Processors	
  

eps	
  =	
  0.10	
  

eps	
  =	
  0.075	
  

eps	
  =	
  0.05	
  

eps	
  =	
  0.025	
  

ANL	
  Intrepid	
  has	
  163840	
  cores	
  



- 16 - 

For a period of time, we considered storing the BFS paths as a Directed Acyclic Graph (DAG). 
A DAG structure allows paths to diverge and rejoin, so that a single leaf can represent a set of 
paths with the same possible suffixes. In a DAG, every node appears only once in the graph, as 
opposed to nodes appearing numerous times in a tree structure. By doing this, we thought we 
could possibly run a single NSP thread for more than one path prefix at a time, theoretically 
giving us the potential for a super-linear speedup. Although this line of reasoning seemed  
promising, we found that this would not work, because different prefixes required blocking out 
different nodes as being “already added to the stack”. Therefore, what would be a possible 
candidate for one prefix might not be a feasible candidate for another prefix. While the thought 
of super-linear speed-up was enticing, we had to accept that our approach for achieving this 
would not produce a correct algorithm. 
 
 
Analysis of Implementation 
 
Table 1 below shows some data collected from various runs of our first parallel code 
implementation on the 20x20 data set on the Triton nodes. The columns show epsilon value, 
number of processors, total NSP runtime in seconds, total paths found, paths found on the leaf of 
fewest paths (Min Paths Leaf), paths found on the leaf of most paths (Max Paths Leaf), speedup, 
and parallel efficiency. 
 

Epsilon	
  
Number	
  of	
  
Processors	
  

Time	
  
(sec)	
   Total	
  Paths	
   	
  	
  

Min	
  Paths	
  
Leaf	
  

Max	
  Paths	
  
Leaf	
   Speedup	
  

Parallel	
  
Efficiency	
  

0.05	
   1	
   21.73	
   4,601,053	
   paths	
   4,601,053	
   	
  	
   1.00	
   1.00	
  
	
  	
   	
  	
   	
  	
   	
  	
   time	
   21.729	
   	
  	
   	
  	
   	
  	
  
	
  	
   	
  	
   	
  	
   	
  	
   paths/sec	
   211,747	
   	
  	
   	
  	
   	
  	
  

0.05	
   5	
   7.07	
   4,601,053	
   paths	
   247,446	
   1,530,887	
   3.07	
   0.61	
  
	
  	
   	
  	
   	
  	
   	
  	
   time	
   1.30064	
   7.07048	
   	
  	
   	
  	
  
	
  	
   	
  	
   	
  	
   	
  	
   paths/sec	
   190,249	
   216,518	
   	
  	
   	
  	
  

0.05	
   48	
   2.51	
   4,601,053	
   paths	
   11	
   565,901	
   8.67	
   0.18	
  
	
  	
   	
  	
   	
  	
   	
  	
   time	
   0.000195	
   2.50676	
   	
  	
   	
  	
  

	
  	
   	
  	
   	
  	
   	
  	
   paths/sec	
   56,403	
   225,750	
   	
  	
   	
  	
  

0.07	
   1	
   392.37	
   86,384,393	
   paths	
   86,384,393	
   	
  	
   1.00	
   1.00	
  
	
  	
   	
  	
   	
  	
   	
  	
   time	
   392.373	
   	
  	
   	
  	
   	
  	
  
	
  	
   	
  	
   	
  	
   	
  	
   paths/sec	
   220,159	
   	
  	
   	
  	
   	
  	
  

0.07	
   5	
   119.94	
   86,384,393	
   paths	
   5,782,131	
   26,620,106	
   3.27	
   0.65	
  
	
  	
   	
  	
   	
  	
   	
  	
   time	
   27.3463	
   119.939	
   	
  	
   	
  	
  
	
  	
   	
  	
   	
  	
   	
  	
   paths/sec	
   211,441	
   221,947	
   	
  	
   	
  	
  

0.07	
   50	
   34.39	
   86,384,393	
   paths	
   137	
   8,129,092	
   11.41	
   0.23	
  
	
  	
   	
  	
   	
  	
   	
  	
   time	
   0.00161	
   34.3939	
   	
  	
   	
  	
  

	
  	
   	
  	
   	
  	
   	
  	
   paths/sec	
   85,091	
   236,353	
   	
  	
   	
  	
  
Table 1 - 1st Parallel Algorithm Runtime Results on the 20x20 data 

In the computational results shown in Table 1, we see that good parallel efficiency was achieved 
when the ratio between the maximum number of paths found on a leaf and the minimum number 



- 17 - 

of paths found on a leaf is not too great. For example, when ε = 0.05, and 5 processors and 
threads were employed (1 BFS level), the ratio was approximately 6:1 “max to min paths”. This 
resulted in a very respectable 0.61 value of parallel efficiency. With epsilon set at 0.05 and when 
employing 48 processes though (BFS level 2), the “max to min paths” ratio was 50,000:1. The 
min leaf quickly finished its work in 0.2 milliseconds, while the max leaf took 2.5 seconds to 
complete. This significant amount of relative idle time resulted in a much worse parallel 
efficiency of 0.18. 
 
Table 2 gives results for computational tests on the 80x80 data using the same parallel 
implementation. This experiment produced even larger discrepancies between the number of 
paths found in the “max” sized leaf and the number of paths found in the “min” sized leaf, 
resulting in a truly abysmal speedup of 1.61 when using 38 processors, which is equivalent to a 
parallel efficiency of 0.04. Note here that, when using multiple processors, the closer the value of 
parallel efficiency is to 1.00 the better. By definition, when one uses only one processor, it will 
be rated at 100% efficiency for that one processor. The main objective in parallelizing a routine 
is to use all processors efficiently with no idle time and reach a parallel efficiency of 1.0 overall.  
 
	
  	
  
Epsilon	
  

Number	
  of	
  
Processors	
  

Time	
  
(sec)	
   Total	
  Paths	
   	
  	
  

Min	
  Leaf	
  
Path	
  

Max	
  Leaf	
  
Paths	
   Speedup	
  

Parallel	
  
Efficiency	
  

0.003	
   1	
   33.21	
   4,459,050	
   paths	
   4,459,050	
   	
  	
   1.00	
   1.00	
  
	
  	
   	
  	
   	
  	
  

	
  
time	
   33.21	
   	
  	
   	
  	
   	
  	
  

	
  	
   	
  	
   	
  	
   	
  	
   paths/sec	
   134,253	
   	
  	
   	
  	
   	
  	
  
0.003	
   5	
   25.51	
   4,459,050	
   paths	
   3,462	
   3,475,928	
   1.30	
   0.26	
  

	
  	
   	
  	
   	
  	
  
	
  

time	
   0.03324	
   25.5127	
   	
  	
   	
  	
  
	
  	
   	
  	
   	
  	
  

	
  
paths/sec	
   104,152	
   136,243	
   	
  	
   	
  	
  

0.003	
   11	
   25.49	
   4,459,050	
   paths	
   852	
   3,472,466	
   1.30	
   0.12	
  
	
  	
   	
  	
   	
  	
  

	
  
time	
   0.01286	
   25.4856	
   	
  	
   	
  	
  

	
  	
   	
  	
   	
  	
   	
  	
   paths/sec	
   66,251	
   136,252	
   	
  	
   	
  	
  
0.003	
   12	
   25.50	
   4,459,050	
   paths	
   852	
   3,472,466	
   1.30	
   0.11	
  

	
  	
   	
  	
   	
  	
  
	
  

time	
   0.01262	
   25.5003	
   	
  	
   	
  	
  
	
  	
   	
  	
   	
  	
  

	
  
paths/sec	
   67,501	
   136,174	
   	
  	
   	
  	
  

0.003	
   14	
   24.29	
   4,459,050	
   paths	
   600	
   3,462,254	
   1.37	
   0.10	
  
	
  	
   	
  	
   	
  	
  

	
  
time	
   0.00817	
   24.2906	
   	
  	
   	
  	
  

	
  	
   	
  	
   	
  	
   	
  	
   paths/sec	
   73,475	
   142,535	
   	
  	
   	
  	
  
0.003	
   22	
   21.95	
   4,459,050	
   paths	
   300	
   3,175,358	
   1.51	
   0.07	
  

	
  	
   	
  	
   	
  	
  
	
  

time	
   0.00408	
   21.9474	
   	
  	
   	
  	
  
	
  	
   	
  	
   	
  	
   	
  	
   paths/sec	
   73,511	
   144,680	
   	
  	
   	
  	
  

0.003	
   38	
   20.68	
   4,459,050	
   paths	
   216	
   3,033,530	
   1.61	
   0.04	
  
	
  	
   	
  	
   	
  	
  

	
  
time	
   0.00527	
   20.68	
   	
  	
   	
  	
  

	
  	
   	
  	
   	
  	
   	
  	
   paths/sec	
   41,018	
   146,714	
   	
  	
   	
  	
  
Table 2 - 1st Parallel Algorithm Runtime Results on the 80x80 data 

 
Due to the independent computation of each leaf, we found that that the expected overall parallel 
efficiency follows this relationship: 



- 18 - 

 

parallel efficiency = PathsTotal
p ! PathsMax

 

 
where PathsTotal is the total number of paths found for the given input parameters and data, and 
PathsMax is the maximum number of paths found by one processor, and p is the number of 
processors used. Additionally, as PathsMax ! PTotal p , then parallel efficiency!1 . This is 
essentially an example of Amdahl’s Law (Amdahl 1967) in action, which states that the potential 
parallelism available in any program is limited by the amount of work that must be run 
sequentially. Clearly, there is a need to try to distribute the work more evenly in order to make 
the most efficient use of all processors. 
 
 
Distributing Workload 
 
The load imbalances in this problem come from performing depth-first search on a raster 
network. This is due to the fact that task costs are completely unknown until after execution is 
completed. Therefore, offline partitioning or scheduling algorithms cannot be used beforehand, 
as there is not enough information available in order to make use of such schemes. 
 
In this project we considered several existing methods for a load balancing. The following is a 
description of these methods and how well they would apply to our NSP path problem. 
 
 
Approach #1 – Randomized Task Distribution 
 
As it stood before, the code distributed the work by running a BFS algorithm until the tree had as 
many leaves as there were processors, then assigned one leaf to each processor for it to run to 
completion. The drawback was that some leaves contained far more work than others, resulting 
in lots of idle processor time for some of the processors. 
 
A randomized task distribution approach would be based on generating far more leaves than 
processors, then assign these tasks randomly to each processor. By randomly distributing 
sufficient work chunks of unknown size to numerous processors, the hope is that overall work 
for each processor average out to be somewhat similar. Adler et al. (1995) show that when using 
randomized algorithms, in order to get a “good” balance one must generate at the very least p log 
p tasks, where p is the number of processors. 
 
Pros of this approach: 
    - Easy to implement 
 
Cons of this approach: 
    - No guarantee of perfect distribution 
    - In a worst-case-scenario, a large outlier could still result in an overall work imbalance 
 
 



- 19 - 

Approach #2 – Dynamic Centralized Scheduling 
 
Centralized scheduling uses an as-needed approach for assigning tasks. Like randomized task 
distribution, centralized scheduling first generates a list of tasks (>> p), then assigns the first p 
tasks to the various processors to compute. When a processor completes a task, it asks the 
scheduler for another task. The scheduler assigns a new task, removes it from the list, and this 
process would continue until all tasks have been assigned and computed. 
 
Pros of this approach: 
    - A little more difficult to implement than option #1, but still relatively easy to code 
 
Cons of this approach: 
    - Susceptible to the possibility of an abnormally large task being assigned last 
    - If communication is expensive, then this could be slow 
 
 
Approach #3 – Dynamic Work Stealing 
 
Dynamic work stealing is an approach that assigns all work to all processors at the start; then 
when one processor completes its tasks, it steals part of a task from another processor in order to 
have more work to do. This approach is certainly viable for a DFS algorithm; and if one does not 
consider communication time between processors, it has the possibility of producing the best 
theoretical results. Unfortunately, is far more difficult to implement than the other options. There 
are also many approaches one can take in selecting which processor to steal work from, 
including asynchronous round robin, global round robin, and random polling/stealing. It has been 
proven that a random polling/stealing approach is just as effective as the other two approaches, 
which is ideal because it is also easier to implement. In our case, we could use a worker queue 
that at each time assigns work from the processor at the front of the queue. Any time a processor 
steals work or gets stolen from, it then gets placed at the back of the queue, ensuring it won’t get 
stolen from immediately afterward. 
 
Pros of this approach: 
    - Best theoretical worst-case scenario 
 
Cons of this approach: 
    - Far more difficult to implement than approaches #1 and #2 
    - If communication is expensive, then this could be slow 
 
 
Approach #4 – Combined Approach 
 
The best way to use the strengths and hide the weaknesses of any approach is to combine it with 
another complimentary approach. For example, a hybrid randomized distribution / work stealing 
approach could show promise in giving a relatively even initial work distribution from the 
randomized approach, then leveling things out toward the end using dynamic work stealing. It’s 



- 20 - 

easy to see though that any hybrid approach would be the most difficult to implement, as it 
requires developing several approaches, as well as integrating them to cooperate together. 
 
 
Existing Approaches: Conclusions 
 
After considering the options, we were not quite satisfied with any of them for our application. 
The first two approaches suffered from major drawbacks due to the possibility of large work 
chunks superseding the benefits of random prescheduling or dynamic work scheduling. Efficient 
dynamic work stealing appears to be promising, but is outside the realm of our programming 
expertise at this moment. Future collaborations with expert parallel programmers could 
incorporate dynamic work stealing to aid in the workload distribution. Without this as an option 
yet, what we needed was a way to be able to predict the amount of work that would be generated 
from each leaf of the BFS tree. That would enable the program to either break down those 
portions into smaller pieces, or use a pre-scheduler to optimally distribute the work evenly. 
Further, such information could potentially be useful in any of the parallel strategies listed above. 
 
 
  



- 21 - 

Analysis of Naïve BFS Work Distribution 
 
Before being able to predict the variation of work distribution, we analyzed what that distribution 
was when using the simple BFS tree approach. We ran the NSP algorithm numerous times to 
completion, each time running the BFS component to a different number of levels, and evaluated 
how many paths were generated from each leaf of the BFS tree at each given level.  
 

 
Figure 8 - Work Distribution for Varying BFS Tree Levels 

Figure 8 shows the work distribution for varying BFS tree levels. With zero levels, 100% of the 
work is done by one process, with 1 level, there are 5 leaves, but one leaf accounts for almost 
80% of the work, another for about 20% of the work, with just a tiny amount of work remaining 
for the three other leaves. As the BFS tree propagates, all of the chunks continue to shrink, some 
more quickly than others. While this visualization is useful at seeing how the tree physically 
propagates, another useful way to view the data is to sort the work chunks by size. Figure 9 is the 
same as Figure 8, but with the work of each leaf for each level breakdown is sorted by size. 
 



- 22 - 

 
Figure 9 - Sorted Work Distribution for Varying BFS Tree Levels 

The x-axis, rather than labeled by level, now shows the number of leaves in that particular level. 
The each column from left to right still represents one more level of depth in the BFS tree. For 
each column, the components of a column of the chart in Figure 9 represent the work in each leaf 
sorted from smallest (at the top of the column) to the largest (at the bottom of the column). This 
presentation helps to convey an idea of how the largest chunks (i.e. the limiting chunks) break 
down over time, as well as give an idea of how the overall distribution of work among the leaves 
break out. The final level is level 25, with 455 leaves. Even with so many leaves, there exists 1 
leaf that accounts for approximately 20% of the work. This points to a need for finding a way to 
generate fewer miniscule leaves, and at the same time break down the larger leaves before 
processing. 
 
  
Workload Prediction 
 
It was clear that what was holding back the ability to generate an even workload distribution was 
the inability to predict how much work would emanate from a particular leaf of the BFS tree. In 
response to this need, we developed a model that predicts how many paths will emanate from a 
particular leaf of the BFS tree. 
 
Let d′(i) be the shortest path length from node i to the destination node t. Thus the shortest path 
length from the origin s to the destination t can be represented by d′(s). 
Recall that the NSP algorithm finds all paths of length ≤ D on the network, where D = (1 + ε) × 
d′(s). Let L(i) be the path length along the BFS tree from the origin node s to node i (which may 



- 23 - 

not necessarily be the shortest path from s to i). Then for any node i on any NSP, the following 
invariant is always true: 
 

L(i) + d′(i) ≤ D 
 
Now define the slack to be how much “wiggle room” we have left to generate non-optimal paths 
from any leaf of the BFS tree. Initially, at the origin, slack(s) = ε × d′(s). This is the total amount 
of slack available for any path to be considered a near shortest path. For any point i along a near 
shortest path, the slack can be calculated as  
 

slack(i) = D - L(i) - d′(i) 
 
This value gives a measure of the amount of distance deviation from the shortest path the 
remaining path branches emanating from i are allowed to have, and yet still be counted as an 
NSP. Given a particular number of BFS levels, we were able to calculate the slack value for all 
leafs of the BFS tree at that point, then run the algorithm to completion to see how many paths 
were generated from each of those leaves. Figure 10 below shows these values plotted against 
each other for a 23 level BFS on the 80x80 dataset. Note that for this data set and ε value, 
slack(s) = 0.791664. 
 

 
  

Figure 10 - Paths Generated vs. Slack Value, 23 BFS levels 

What we can observe here is that there is a strong relation between the slack value of a leaf and 
the number of paths generated from that leaf. This same curve shape was found for other BFS 
levels as well. Since there appears to be a strong relationship between slack and the number of 

0	
  

100000	
  

200000	
  

300000	
  

400000	
  

500000	
  

600000	
  

700000	
  

800000	
  

900000	
  

1000000	
  

0	
   0.1	
   0.2	
   0.3	
   0.4	
   0.5	
   0.6	
   0.7	
   0.8	
  

Pa
th
s	
  
Ge
ne
ra
te
d	
  

slack	
  value,	
  [8080	
  dataset,	
  eps	
  =	
  0.003,	
  slack(s)	
  =	
  0.791664]	
  



- 24 - 

alternate paths generated from that leaf, then this means that the slack value can be used as a 
predictor for which leaves will generate more work than others. 
 
 
Threshold BFS Expansion 
 
Using the slack value information, we modified the BFS tree expansion to expand only nodes 
with a higher than average-expected path count. Rather than expanding all leaves at each level, 
we selected a threshold value as a cutoff, expanding only BFS leaves that had a higher slack 
value than the cutoff. To generalize the cutoff value, we defined a normalized slack as: 
 

0 ! normalized slack = slack(i)
slack(s)

!1  

 
This normalization allows us to have a slack range between 0 and 1. Originally, with the BFS 
expansion, all leaves on the BFS tree had the same depth. This new BFS expansion results in a 
BFS tree where the branches have different depths, essentially fathoming once they have a 
normalized slack value below the cutoff value. If we again plot the sorted work distribution as 
the BFS tree iterates through a new distribution of work emerges, as depicted in Figure 11. 
 

 
Figure 11 - Sorted Work Distribution for Varying BFS Tree Levels with threshold BFS expansion 

As expected, the large work chunks remain the same as the naïve BFS expansion, as those are 
split up the same as before. The difference is that the small chunks are not further divided. This 
results in far fewer chunks after the same 25 BFS expansions (67 leaves in this case vs. 455 



- 25 - 

before), allowing the tree to develop far deeper when generating the same number of leaves, and 
breaking up the larger chunks while not wasting time breaking up the small ones. As an example, 
in Figure 11, the largest work chunk at level 25 contains about 20% of the processing work, yet 
only 67 leaves/threads have been created, whereas in Figure 9, after 25 levels the largest work 
chunk still contains about 20% of the total processing work, yet 455 leaves/threads have been 
created. If our goal was to generate 450 threads, we could continue developing the 67 leaf tree, 
and likely reduce the largest work chunk to below 20%. 
 
One aspect that must be considered in this threshold strategy is the selection of a threshold value. 
For example, Figures 12 and 13 depict the number of paths from each leaf vs. normalized slack 
value, with the tree developed to 85 levels on the 80x80 dataset. The first plot, given in Figure 
12, shows the results when using a normalized slack threshold 0.7, and the second plot in Figure 
13 is associated when using normalized slack threshold of 0.8. The first graph (Figure 12) shows 
that 23,882 leaves were generated, and the maximum number of paths from any one leaf is 
235,266. The second graph (Figure 13) shows that 10,620 leaves were generated; yet the 
maximum paths from one leaf are still 235,266. In essence, picking the lower threshold 
generated a tree over twice as large, thereby using much more memory; yet still had the same 
limiting maximum work chunk size as what was given by the higher threshold. At this point, we 
have not generated any guidelines on how to select an optimal threshold value, but this is 
certainly something that is worth exploring in the future. 
 

 
Figure 12 - 8080 data, epsilon = 0.003, 85 level BFS, norm threshold = 0.7 



- 26 - 

 
Figure 13 - 8080 data, epsilon = 0.003, 85 level BFS, norm threshold = 0.8 

 
 
Tree Trimming BFS: Computational Results 
 
We applied the new tree trimming BFS Near Shortest Path algorithm on a computer with 8 
processors, expanding the BFS tree to 6 levels using a normalized trimming threshold of 0.8. 
This test ran with 8 processors in 20.722 seconds, only 0.042 seconds slower than the naïve 6-
level BFS that used 38 processors. By achieving the same runtime and speedup with far fewer 
processors, we were able to improve the parallel efficiency from 0.04 to 0.20, which is a 
substantial gain in efficiency. 
 
Further improvement can be generated when the BFS tree is grown to a larger depth. When run 
to 25 levels (and 67 leaves), while using 8 processors, the computation was completed in 7.587 
seconds, producing a speedup of 4.378 and a parallel efficiency of 0.547. While still not perfect 
in parallel efficiency, this example demonstrates how this tree splitting approach can very 
effectively distribute computational work more evenly based upon normalized path slack. 
 
 
 
  



- 27 - 

Conclusions 
 
This project set out to develop a parallel implementation of a near shortest paths algorithm. The 
original approach split the work up in a pleasingly parallel fashion, but because of large 
variances in the work-chunk sizes, most processors spent much of their time sitting idle, and 
overall performance suffered accordingly. We developed a new approach in splitting up the 
work, devising a predictive metric that could be used to estimate the work on each portion of the 
BFS tree, and to then expand the tree in portions with high-expected amounts of work. This 
approach succeeded in returning a more consistent set of work-chunks, resulting in improved 
overall performance of the parallel code. 
 
It is important to note that work remains in exploring the properties of this new approach, 
including developing guidelines for optimal threshold values, and determining how far one 
should develop the tree before the time to calculate a new BFS level outweighs the benefits from 
further splitting up the work. These are issues that will be considered in order to fully develop 
the theory behind this approach. 
 
Overall, the preliminary results generated here show tremendous promise for using the near 
shortest path algorithm in a parallel mode for large networks. Although further testing and 
analysis is required in order to fully develop and tune this approach, all results thus far point to 
this being effective at improving the division of work, resulting in better speedup and parallel 
efficiency. The transmission corridor location problem is a complex and controversial problem in 
a public setting. The development reported in this document is one of the tools that are 
envisioned to play a key role in corridor planning, by generating both fine-scale and gross-scale 
alternatives that ensure all competing close to optimal alternatives are generated.  
 
 
  



- 28 - 

Acknowledgements 
 
We would like to thank the Environmental Sciences Division of Argonne National Laboratories 
for providing the funding to conduct the initial part of this research under Project #301CR. We 
would also like to acknowledge John Krummel for his encouragement and guidance.  



- 29 - 

Bibliography 
 
Adler, M., S. Chakrabarti, M. Mitzenmacher & L. Rasmussen, (1995). Parallel randomized load 

balancing. Proceedings of the twenty-seventh annual ACM symposium on Theory of 
computing. Las Vegas, Nevada, United States: ACM, 238-247. 

Aho, A.V., J.E. Hopcroft & J. Ullman, (1983). Data structures and algorithms, Addison-Wesley 
Longman Publishing Co., Inc. Boston, MA, USA. 

Amdahl, G.M., (1967). Validity of the single processor approach to achieving large scale 
computing capabilitiesACM, 483-485. 

Bellman, R.E., (1958). On a routing problem. Q. Applied Math, 16, 87-90. 
Bock, F., H. Kantner & J. Haynes, (1957). An algorithm (the r-th best path algorithm) for finding 

and ranking paths through a network. Research report, Armour Research Foundation of 
Illinois Institute of Technology, Chicago, Illinois. 

Byers, T. & M. Waterman, (1984). Determining all optimal and near-optimal solutions when 
solving shortest path problems by dynamic programming. Operations Research, 32, 
1381-1384. 

Carlyle, W. & R. Wood, (2005). Near-shortest and k-shortest simple paths. Networks, 46, 98-
109. 

Carlyle, W.M., J.O. Royset & R.K. Wood, (2008). Lagrangian relaxation and enumeration for 
solving constrained shortest-path problems. Networks, 52, 256-270. 

Church, R.L., S.R. Loban & K. Lombard, (1992). An interface for exploring spatial alternatives 
for a corridor location problem. Computers & Geosciences, 18, 1095-1105. 

Dantzig, G., (1957). Discrete-variable extremum problems. Operations Research, 266-277. 
Dijkstra, E.W., (1959). A note on two problems in connexion with graphs. Numerische 

Mathematik, 1, 269-271. 
Ford, L., (1956). Network flow theory. Rand Corporation Technical Report, P-932. 
Goodchild, M., (1977). An evaluation of lattice solutions to the problem of corridor location. 

Environment and Planning A, 9, 727-738. 
Hadjiconstantinou, E. & N. Christofides, (1999). An efficient implementation of an algorithm for 

finding k shortest simple paths. Networks, 34, 88-101. 
Hoffman, W. & R. Pavley, (1959). A method for the solution of the n th best path problem. 

Journal of the ACM (JACM), 6, 506-514. 
Huber, D.L. & R.L. Church, (1985). Transmission corridor location modeling. Journal of 

Transportation Engineering-Asce, 111, 114-130. 
Katoh, N., T. Ibaraki & H. Mine, (1982). An efficient algorithm for k shortest simple paths. 

Networks, 12, 411-427. 
Lombard, K. & R. Church, (1993). The gateway shortest path problem: Generating alternative 

routes for a corridor location problem. Geographical Systems, 1, 25-45. 
Medrano, F.A. & R.L. Church, (2011). Transmission corridor location: Multi-path alternative 

generation using the k-shortest path method. Santa Barbara: Geotrans. 
Moore, E., (1959). The shortest path through a maze. Proceedings of the International 

Symposium on the Theory of Switching, Harvard University, 285-292. 
Orden, A., (1956). The transhipment problem. Management Science, 2, 276-285. 
Yen, J.Y., (1971). Finding the k shortest loopless paths in a network. Management Science, 17, 

712-716. 



- 30 - 

Zhang, X.D. & M.P. Armstrong, (2008). Genetic algorithms and the corridor location problem: 
Multiple objectives and alternative solutions. Environment and Planning B-Planning & 
Design, 35, 148-168. 

 
 


