
A Parallel Biobjective Shortest Path
Algorithm

F. Antonio Medrano and Richard L. Church
Project 301CR, GeoTrans Report 2014-12-01

December 2014

Photos courtesy of DOE/NREL

University of California, Santa Barbara
Department of Geography

1832 Ellison Hall
Santa Barbara, CA 93106
medrano@geog.ucsb.edu

church@geog.ucsb.edu

1

A Parallel Biobjective Shortest Path Algorithm

F. Antonio Medrano
Richard L. Church

Corridor Location Project
GeoTrans Laboratory

Department of Geography
University of California, Santa Barbara

December 31, 2014

This report has been developed as a part of the corridor location research project at the
University of California, Santa Barbara. The goal of this project is to take a fresh look at
the process of corridor location, and develop a set of algorithms that compute path
alternatives using a foundation of solid geographical theory in order to offer designers
better tools for developing quality alternatives that consider the entire spectrum of viable
solutions. And just as importantly, as data sets become increasingly massive and present
challenging computational elements, it is important that algorithms be efficient and able
to take advantage of parallel computing resources. Please cite this report as: Medrano,
FA, and RL Church (2014) “A Parallel Biobjective Shortest Path Algorithm” (Report
#12-14-01), GeoTrans Laboratory, UCSB, Santa Barbara CA.

2

I. Introduction

Exponential growth in the capabilities of computerized data collection and analysis over
the past few decades has resulted in the availability of massive data sets and networks for
modeling and simulation. Traditional problems of public systems development such as
corridor location for new transmission lines, pipelines, roadways and railways have
always been considered a wicked optimization problem (Liebman 1976), and are now
even more complicated given higher resolutions of satellite imagery for generating finer
grained terrain network models. New frontiers in the analysis of large network data sets
include the study of relationships between social media users (1.23 billion active
Facebook users as of January 2014), and grouping by attributes within large online data
repositories (Flickr contained over 8 billion photographs as of March 2013, a large
portion of which are geotagged). These, and countless other recent data sources have
served as the impetus for new terminology such as big data for working with data sets far
too large to be processed by traditional database management tools, and the field of
analytics for discovering meaningful results from these overwhelmingly large data sets.

As data sets increase in size, the computation required to do meaningful analysis on the
data also increases. Moore’s Law (Moore 1965) states that the number of transistors
capable of being placed in an integrated circuit, and thus the computational power of a
CPU, doubles every two years. This rule has held true since its inception in 1965 and
until the early 2000’s was mostly realized through faster processor clock speeds. In 2004,
thermal limitations prevented any further increase in processor clock speeds, creating a
paradigm shift from faster clocks to multiple processor cores per CPU. Legacy
programming code though cannot take advantage of multiple cores, and requires
extensive rewrites to a parallel language in order to use the full capabilities of modern
computers. This is not a simple task, as parallel computing introduces problems such as
race conditions and deadlocks, which can result in non-deterministic behavior, infinite
loops, or runtime failures. Proper implementation of low-level parallel libraries such as
MPI, OpenMP, and UPC require advanced programming knowledge and sophisticated
control of data transfer between processors. To address the difficulty of low-level
schemes, higher-level libraries have emerged that simplify concurrent programming by
hiding many of the low-level nuts and bolts. Examples include Cilk++ for C++, Grand
Central Dispatch for Objective C, the Parallel Computing Toolbox for Matlab, and the
concurrency libraries for Java. While these libraries do not eliminate all of the perils of
concurrent programming, they do allow the programmer to focus more on big picture
algorithm issues rather than the minute details of message passing schemes.

This work presents a general framework for using one such library, the Java fork/join
library, for efficiently solving multi-objective network optimization problems in modern
multi-core computers. Java is the only high-level language to offer a structured fork/join
library optimized for divide-and-conquer algorithms, and is thus particularly suitable for
the Non-Inferior Set Estimation (NISE) approach that is efficient at calculating the
supported solutions of a multi-objective problem (Cohon et al. 1979). Section 0
introduces the problem and defines variables used in later pseudocode. Section 0 begins
with a description of the serial Non-Inferior Set Estimation (NISE) algorithm (Cohon et

3

al. 1979) for computing supported multi-criteria solutions, and then expands this to a
proposed parallel implementation, called pNISE. Section IV presents a case study using
pNISE for solving a biobjective shortest path problem on a large raster GIS network.
Section V discusses some computational case study of this application to a biobjective
shortest path problem. Section VI presents some improvements to pNISE for instances
with large number of processors. Finally, section 0 provides conclusions and enumerates
other problems where this approach could be beneficial.

4

II. Background

Multiobjective optimization involves the task of determining noninferior solutions when
considering multiple conflicting objectives, and is inherently more complicated than a
problem’s single-objective counterpart due to the added objective dimensionality. Most
of past work in multi-objective modeling is first described for the use of two objectives,
as this is usually the simplest case. Accommodating three or more objectives necessitates
more complicated bookkeeping than what is required for two objectives, as some facets
of the intersecting neighboring solutions in three or higher dimensions may lie in the
interior rather than on the boundary of the convex polytope (Solanki 1986). Aside from
this issue however, the fundamental theorems used to solve for tradeoffs in two
objectives can be relatively easily expanded to three or more objectives. For this reason,
most of the literature is concerned with the resolution of biobjective problems. This paper
takes this same approach and restricts the discussion to biobjective problems as well.
Further discussion of the nuances and approaches for problems with more than two
objectives can be found in Przybylski et al. (2010).

In 1979, three different papers appeared in the published literature that addressed the
problem of finding efficient solutions to biobjective optimization problems. (Dial 1979)
developed a process that involved finding up to a pre-specified number of supported
points to a biobjective shortest path problem, Aneja and Nair (1979) developed an
approach to find all supported points to a biobjective transportation problem, and Cohon
et al. (1979) developed a process to find non-dominated solutions to biobjective linear
programming problems. Overall, all three techniques are quite similar, but do differ in
their main focus. For example, Dial’s approach runs until it finds a certain number of
solutions or finds the complete tradeoff curve. The choice of problems solved, and hence
the resolved tradeoff curve is based upon a recursion formula taking problems in order.
Aneja and Nair’s approach is similar to that of Dial’s except it does not stop until it has
resolved all parts of the tradeoff curve. Cohon et al. (1979) show how lower and upper
bounds on the tradeoff curve can be defined as supported points are added to the tradeoff
curve. This allows one the opportunity to resolve at each iteration that portion of the
curve with the greatest estimation error. This technique is called the Non-Inferior
Solution Estimation (NISE) technique. The NISE technique will either generate all
supported points on a tradeoff curve within a set estimation bound limit, or can be
executed to completion to generate all supporting points as suggested by Aneja and Nair.
In this paper, we adopt the NISE method of Cohon et al. as it can be considered the most
general of the three techniques. NISE (also known by various other names) has become
the standard method in the literature for solving the supported solutions of a
multiobjective problem, due to its efficiency and applicability with a wide range of solver
techniques (Current et al. 1990, Ehrgott and Wiecek 2005, Daskalakis et al. 2010,
Clímaco and Pascoal 2012). It is used as part of the preferred approach in a wide range of
multiobjective applications, including forestry and agriculture (Fischer and Church 2003,
Pyke and Fischer 2005, Kasprzyk et al. 2009, Breschan and Heinimann 2013),
transmission and power flow systems (Salgado and Rangel Jr 2012, Soliman and
Mantawy 2012, Medrano and Church 2014), industrial operations and logistics (Schilling

5

1982, Weber and Ellram 1993, Reklaitis 1996), and medical operations (Medaglia et al.
2009), just to name a few.

While NISE was originally presented within the context of biobjective linear
programming problem, it can be applied to finding the supported solutions to biobjective
Integer Programming (IP) or Mixed Integer Programming (MIP) problems as well.
Modern first-rate MIP solvers have parallelism built-in to take advantage of multicore
architectures; but specialized network optimization algorithms can often solve graph
problems more efficiently than a general MIP solver. Tarapata (2007) published a
comparison between solving a multiobjective shortest path problem on CPLEX vs. using
a Dijkstra solver, and found that on large problems Dijkstra’s computation times were 70
to 80 times faster than CPLEX.

IP problems can also have non-convex, non-inferior solutions known as unsupported
solutions. Unsupported solutions are much more difficult to compute, as solving for those
is equivalent to adding a knapsack constraint to the problem, which has been proven to be
NP-hard (Garey and Johnson 1979). Some work has been published by Sanders and
Mandow (2013) on a parallel biobjective shortest path algorithm for unsupported
solutions, but this method introduces complicated and expensive data structures and
introduce significant computational overhead in comparison to the fastest serial methods.
A more recent method has been published that tries to reduce this overhead (Erb et al.
2014), although it is difficult to judge its effectiveness since the publication lacks any
comparison with the fastest serial methods. This report focuses on finding only the
supported solutions of either an LP or IP problem in parallel.

The methods described in this paper are applicable to a variety of specialized network
algorithms, including but not limited to biobjective variants of the minimum spanning
tree problem, classical transportation problem, assignment problem, maximum flow
problem, and the minimum cost flow problem. This work has chosen to apply the NISE
approach though to a biobjective shortest path problem using a form of Dijkstra’s shortest
path algorithm (Dijkstra 1959) with a binary heap priority queue (Cherkassky et al. 1996)
as the optimization solver. As a point of reference, we compared computation times of
our Dijkstra solver implementation to the native Matlab version on a single-objective
problem. The Matlab function is called graphshortestpath(), and also uses a binary
heap priority queue. When solved on various problems on two different 1000x1000 raster
network data sets, the Matlab runtimes were consistently at least 2.2x longer than our
Java version.

The biobjective shortest path problem is defined as follows. Let G = (N, A) be a directed
graph network with node set N = {u1, u2, ... , un} and arc set A = {(u1, v1), ... , (um, vm)} .
Each arc (u,v)∈A has associated with it two positive real costs cuv = (cuv

1 , cuv
2) . The

biobjective shortest path problem aims to solve for the minimum-cost paths from a source
node s∈N to a destination node t ∈N that minimizes two, often competing, objectives,
z1 and z2. Each arc has associated with it a decision variable xuv that is equal to 1 if it lies
on the optimal shortest path, and 0 otherwise. This results in the following problem
formulation:

6

min z1(x) = cuv
1 xuv

(u,v)∈A
∑

min z2 (x) = cuv
2 xuv

(u,v)∈A
∑

s.t. xvu
(u,v)∈A
∑ − xvu

(v,u)∈A
∑ =

1 if u = s
-1 if u = t
0 if u ≠ s, t

%

&
'

(
'

xuv = 0,1{ } for all (u,v)∈ A

 (1)

While the above formulation contains two distinct objectives, supported solutions may be
found by solving the weighted combined single-objective formulation, using the weight
α, where 0 ≤ α ≤ 1.

min zC (x) = α × z1(x) + (1−α)× z2 (x) (2)

Different supported solutions may be computed by varying the weight between the two
objectives. Setting α = 1 finds the optimal solution considering only the first objective,
while setting α = 0 finds the optimal solution with respect to the second objective, and
setting α to something in between to find compromise solutions on the trade-off curve.
While it is possible to find a number of supported solutions by iteratively stepping the
weight value, the NISE method (described in the next section) specifies a procedure to
find all distinct supported solutions with a minimum number of total solver iterations, or
to solve for a set of supported points and stop when all points within an estimation bound
have been defined.

Each solution to the combined objective of equation generates an s-t path that is a
supported non-dominated solution, i.e. σi is an optimal solution for a given α.
Additionally, let xuv (σ i) be the value of the variable xuv in the σi solution, where the
value is 1 if arc (u, v) is on the shortest path, and 0 otherwise. For a given path solution
σi, the z1(σi) is its objective value with respect to the first objective, and z2(σi) is its
objective value with respect to the second objective, as defined below. The term zC(σi, α)
represents the combined weighted objective according to the weight α.

 z1(σ i) = cuv
1 xuv (

(u,v)∈A
∑ σ i) (3)

 z2 (σ i) = cuv
2 xuv (

(u,v)∈A
∑ σ i) (4)

 zC (σ i,α) =α × z1(σ i)+ (1−α)× z1(σ i) (5)

The set Ψ = {σ1, σ 2, ... , σ p} is the set of all supported non-dominated solutions to the
problem, and form a convex Pareto frontier when plotted in objective space.

7

III. Supported Solution Search

A. Serial Non-Inferior Set Estimation (NISE)

The NISE method is used to find a set or subset of noninferior solutions of a biobjective
linear, integer, or mixed-integer programming problem. Here, we describe this method to
find all supported points of a trade-off curve. NISE begins by initially computing the
single-objective solutions for each objective. In the biobjective case, these involve using
weights α = 0 and α = 1. Once these solutions are determined, a weighting is chosen with
equation 6 such that the zc value for the two solutions are equal

 α =
z2 (σ i)− z2 (σ j)()

z1(σ i)− z1(σ j)()+ z2 (σ i)− z2 (σ j)() (6)

Figure 1 graphically depicts how the selection of α creates an objective line where the
two initial solutions, σ1 and σ2, have equal combined objective values. With this
weighting, the problem can be solved again to find a solution that minimizes this
weighted combined objective, denoted by σ3.

Figure 1. Objective space: σ3 solves min zc(x) with weight α

After solving for σ3, new weightings can be determined to find solutions that minimize
the combined objective between the new adjacent supported points. Figure 2 shows a new
objective line to find a solution σ4 between σ1 and σ3, and another objective line for
finding a solution σ5 between σ3 and σ2. If a combined objective returns a solution that
does not improve the combined objective from the previously found solutions, then there
are no supported points that expand the convex hull between those respective solutions
and the search in that region is terminated. This process continues until all adjacent points
have not had any new solutions found between them, and thus all supported solutions
have been found.

σ2
σ3

α such that zc(σ1,α) = zc(σ2,α)

High%

High%

Low%

Low%

z2"

z1"

σ1

8

Figure 2. Objective space: supported solutions between σ1 and σ3, and between σ3 and σ2

Overall, NISE is a divide-and-conquer approach, and the general algorithm can be
represented compactly with recursive function calls. The following pseudocode uses the
NISE method for solving a biobjective shortest path problem using an optimal shortest
path solver. The solver used in this work was Dijkstra’s Algorithm with a binary heap
priority queue (Cherkassky et al. 1996), although other specialized network algorithms
could be used instead. In addition to the minimization problem presented, the code
applies equally to a maximization problem by reversing the inequality in the dominance
check.

High%

High%

Low%

Low%

z2"

z1"

σ1

σ2

σ3

σ4

σ5

9

Preliminary Algorithm: NISE for Biobjective Shortest Paths

// zC(x) = α*z1(x) + (1– α)*z2(x)
// Ψ = {σ1, σ2,…, σp} = the set of supported non-dominated solutions
// Dij(α) solves a shortest s-t path with Dijkstra’s algorithm using a
// combined objective weighted by α
// SetA(σi, σj) selects next value of α based on the z1 and z2 values of
// σi and σj
// RecursiveNISE(σi, σj) computes a supported solution between σi and σj

function: main
α = 1 // minimize first objective
σi = Dij(α)
α = 0 // minimize second objective
σj = Dij(α)
Ψ = σi
Ψ += RecursiveNISE(σi, σj) // begin recursive NISE procedure

function: RecursiveNISE(σi, σj)
α = SetA(σi, σj) // calculate alpha weighting, equation 6
σk = Dij(α) // solve composite objective
if (zC(σk, α) < zC(σi, α)) // if soln improves the composite
objective
Ψ += RecursiveNISE(σi, σk)
Ψ += RecursiveNISE(σk, σj)
else
Ψ += σj // else if no improvement found, return σj
end
return Ψ

The above algorithm though is a simplified version, and does not account for various
anomalies that may occasionally arise. The next section lists these anomalies and how to
deal with them, followed by a more comprehensive pseudocode that accounts for these
scenarios.

B. NISE Anomalies

There are a few situations where one must take care in implementing the NISE method to
avoid false-positive solutions or a non-terminating recursion causing a stack overflow
exception. The following details these possible pitfalls, and how to avoid them.

1. Weakly Dominated Single Objective Solutions
The initial stage of the method requires solving the problem for each single objective.
Oftentimes, there may exist numerous solutions that equally optimize that one objective.
With regard to that objective, any of those solutions is optimal, yet they may perform
quite differently from one-another when considering the other objectives in the model. In
fact, in the initial single-objective base cases, an optimal solution may be returned that is
weakly dominated by other equally optimal solutions. Such a solution is considered
inferior, and should be omitted from the final non-dominated solution set.

10

For example, suppose one is minimizing z1(x) in the initial base case, as shown in Figure
3. The solver may return the solution σ1 , which is a minimum feasible solution to the
problem with respect to objective 1. But there may exist another solution that was not
found by the solver, ′σ1 , that weakly dominates σ1 , i.e. z1(σ1) = z1(′σ1) and
z2 (σ1) > z2 (′σ1) .

Figure 3. Weakly dominated solution that minimizes z1(x)

Later in the algorithm, ′σ1 will be found as the solution to a combined objective where α
is very close to 1. A proper algorithm will put in place mechanisms to detect that it
dominates σ1 in order to eliminate it from the final solution.

2. Multiple Equal Value Composite Solutions
Another anomaly arises when solving a composite objective function, i.e. 0 < α < 1,
where there are numerous solutions with the same composite objective value. Figure 4
shows what this scenario would look like when plotting the solutions in objective space.
In this case, for a given α, zC (σ i,α) = zC (σ j,α) = zC (σ k,α) . If σ i and σ k were the points
used to determine α, and the solution returned is σ j , then there is no problem. σ j is a
non-dominated solution that is on the convex Pareto-frontier. While its presence does not
change the shape of the convex region, i.e. it is not a corner point; it is an optimal trade-
off solution that should be kept. The NISE solution approach does not guarantee finding
all solutions that are not corner points, but some may be found by chance.

min z1(x)

High%

High%

Low%

Low%

z2"

z1"

σ1

σ' 1

11

Figure 4. Multiple composite objective optimal solutions

The problem arises when σ i and σ j are the “outer points”, i.e. RecursiveNISE(σi, σj),
and the solution returned is σ k . If that point is kept, then the algorithm splits and runs
RecursiveNISE(σi, σk) and RecursiveNISE(σk, σj). If RecursiveNISE(σi, σk)
returns σ j , then there is a situation of an endless cycle alternating between those
solutions. With a recursive function, this will result in a stack overflow error, as the
function will continue recursing ad infinitum until memory runs out.

In order to prevent this error and also to keep non-dominated solutions that are not corner
points, rather than checking if an improvement is made to the combined objective zc, a
different criterion should be used to control if the function should recursively split. The
alternative is to check if the returned solution is lexicographically in-between the outer
points. If it is, then keep and split. Otherwise, the solution is lexicographically outside of
the points, and the recursion ends and returns the appropriate solution. The next section
revises the previous NISE pseudocode to take into account these two anomaly situations.

σk

σj

High%

High%

Low%

Low%

z2"

z1"

σi

12

C. Complete NISE Pseudocode
Complete Algorithm: NISE for Biobjective Shortest Paths

// zC(x) = α*z1(x) + (1– α)*z2(x)
// Ψ = {σ1, σ2,…, σp} = the set of supported non-dominated solutions
// Dij(α) solves a shortest s-t path with Dijkstra’s algorithm using a
// combined objective weighted by α
// SetA(σi, σj) selects next value of α based on the z1 and z2 values of
// σi and σj
// RecursiveNISE(σi, σj) computes a supported solution between σi and σj

function: main
α = 1 // minimize first objective
σi = Dij(α)
α = 0 // minimize second objective
σj = Dij(α)
Ψ = σi
Ψ += RecursiveNISE(σi, σj) // begin recursive NISE procedure
if (z1(σ1) == z1(σ2)) // if σ2 dominates σ1
Σ.removeFirstElement()
end

function: RecursiveNISE(σi, σj)
α = SetA(σi, σj) // calculate alpha weighting, equation 6
σk = Dij(α) // solve composite objective
// if σk is lexicographically between σi and σj
if ((z2(σk) < z2(σi)) and (z1(σk) < z1(σj)))
if (z2(σk) == z2(σj)) // if σk weakly dominates σj
Ψ += RecursiveNISE(σi, σk)
else if (z1(σk) == z1(σi)) // if σk weakly dominates σi
Ψ += σk
Ψ += RecursiveNISE(σk, σj)
else // else σk is non-dominated
Ψ += RecursiveNISE(σi, σk)
Ψ += RecursiveNISE(σk, σj)
end
else
Ψ += σj // else if no improvement found, return σj
end
return Ψ

D. Java Fork/Join Framework

Java is a cross-platform object-oriented programming language that is ubiquitous in
scientific computing, as well as in general desktop and mobile computing. It was
originally released by Sun Microsystems in 1995, and is currently owned and actively
developed by Oracle Corporation. One of the areas of Java language development since
2000 has been in its concurrency libraries. In September 2004, Java 5 was released which
for the first time included the java.util.concurrent application programming interface
(API) that included various low-level tools for simultaneously processing numerous
threads. Developers saw a further need for higher-level concurrency tools that were
implicitly scalable over a wide variety of hardware configurations, and the fork/join

13

framework was introduced by Doug Lea to address this need though the Java Community
Process as a Java Specification Request, JSR 166 (Lea 2000, Lea 2003, Lea et al. 2004).

Fork/join is specifically designed to handle the difficult task of adding concurrency to
recursive divide-and-conquer methods. Concurrent divide-and-conquer methods solve a
problem by recursively splitting them into small subtasks, that are then solved in parallel,
waiting for them to complete, and then composing results into a final answer. This
approach is the basis of efficient algorithms for all kinds of problems, such as sorting
(e.g. quicksort, merge sort), multiplying large numbers, syntactic analysis (e.g. top-down
parsers), convolution filters for digital image processing, and computing discrete Fourier
transform (FFTs). The NISE algorithm described in this paper, used for determining the
supported solutions to a biobjective optimization problem, also follows this general
design paradigm.

The work breakdown of a divide-and-conquer algorithm tends to take a tree structure,
where the task is split numerous times until a stopping criterion is reached, as shown
graphically in Figure 5. For sorting or image processing, the stopping criteria may be
dividing the problem into adequately small sub-problems; or in the case of NISE, the
division stops for a specific region of the trade-off curve when no new supported solution
is found in between two others. At this point, the results of the computation are sent back
up the tree hierarchy, implicitly retaining the organized structure of the division, until all
results have reached the top level and the final result is complete. Fork/join task trees
may be symmetrical, as is typically the case for most divide-and-conquer algorithms, but
may also be asymmetrical, as is the case with NISE.

Figure 5. Fork/join task division

The Java implementation of fork/join uses a ForkJoinPool executor to manage the
asynchronous concurrent execution of tasks. Tasks to be managed by the ForkJoinPool
must implement the ForkJoinTask interface. ForkJoinTask objects feature two
methods for performing their function: the fork() method launches a new task as a
subtask of the one that called it, allowing it to be executed asynchronously; and, the
join() method returns the results to the higher level task. A task cannot be joined until

1"

1.2"1.1"

1.2.1"1.1.1" 1.2.2"1.1.2"

join()" join()" join()" join()"

join()"join()"

fork()" fork()"

fork()"fork()"fork()"fork()"

14

all of its sub-tasks have joined into it, ensuring that all computations are completed
before going back up the hierarchy. The Java implementation of ForkJoinPool is
capable of “work stealing”, which actively steals and reallocates tasks when a processor
is waiting for a sub-task to complete and there are other pending tasks remaining to be
computed. This helps to ensure balanced workloads across processors, improving the
overall parallel efficiency of the application.

15

IV. Parallel NISE (pNISE)

A. Parallel Divide and Conquer

The general usage of the fork/join design pattern takes the following form:

if (my portion of the work is small enough)
 do the work directly
else
 split my work into two pieces
 invoke the two pieces and wait for the results
end

For the purposes of NISE though, it is necessary to first run a solver iteration in order to
determine whether to divide the problem once more. To accomplish this, the following
modification to the design pattern is used:

optimize weighted composite objective
if (the problem is indivisible)
 return the result
else
 split problem into two sub-problems
 invoke the two sub-problems and wait for the results
 return list of results
end

Finer nuances are necessary for handling if a weakly dominated extreme point is
detected, in which case then the program needs to create a single sub-problem without a
split.

B. Parallel Single-Objective Extreme Points

In addition to the binary tree generated from the recursive task division, the initial base
case of the NISE algorithm requires two independent runs (in the biobjective case) of a
network optimization solver. These can also be set up to be run in parallel, and since this
is a general iterative procedure (rather than recursive), the simplest way of doing so is
with multithreading using Java’s Thread object. In this case, the solver is initialized
within two independent threads, run simultaneously, and the join() method of Thread is
used to wait until both threads have completed before proceeding with the remainder of
the program.

If desired, one could avoid threads altogether, and continue using fork/join for the two
base cases. While fork/join is intended for use on recursive functions, one can trick it for
use on an iterative function by creating a wrapper class. Below is a pseudocode
generalization of how this wrapper class is structured, called SolverWrapper. It takes
two arguments: the first is a control boolean, and the second is the α value. One begins by
calling SolverWrapper(true,-1), where in this case the second argument is redundant
and can take on any value. With an initial control argument of true, the program
proceeds to split into two sub-problems, which are solved simultaneously using the

16

fork/join functionality. Each sub-problem is given a control argument of false and α
values of 0 and 1 respectively, corresponding to the two single-objective optimizations.

class SolverWrapper(boolean toggle, double a)
if (toggle == false)
 Solve(a) // optimize with composite weight a
 return result
else
 SolverWrapper(false,0)
 SolverWrapper(false,1)
 return list of results
end

Experiments indicated that no significant parallel performance difference between using
threads or a wrapper fork/join class for the initial base cases, possibly due to the fact that
only two problems were being solved.

17

V. Computational Case Study

A. Test Networks

While applicable to numerous multi-criteria network problems, the motivation behind
this work was to develop tools to better enable the generation of noninferior alternatives
to a transmission line corridor location problem. Thus, the performance of the pNISE
procedure was evaluated by running a biobjective shortest path analysis on a GIS-based
raster data set assembled and used by the Eastern Interconnection States' Planning
Council (EISPC). This data set is intended to facilitate the identification of potential
energy sites and transmission line corridors within the EISPC region, which spans 39
eastern U.S. states, Washington D.C., and 8 Canadian provinces. The data was assembled
jointly by Argonne National Laboratory, Oak Ridge National Laboratory, and the
National Renewable Energy Laboratory as a part of their EISPC’s Energy Zones Study
(EZS) (Kuiper et al. 2013).

The EZS data contains numerous geographical information layers that would be used in a
suitability analysis for locating new energy infrastructure, and is available through the
EISPC Energy Zones Mapping Tool (EZMT, eispctools.anl.gov). The EZS includes 250
data layers, including such things as land cover type, slope, water bodies, watersheds,
essential habitats, earthquake intensities, existing transmission lines, substations, rail and
roadways, just to name a few. This work used a 1000x1000 raster subset of the EZS data,
with a 250 square meter cell size. The region analyzed was in the Kentucky Lake region
where the Tennessee River and the Cumberland River intersect the Ohio River; and
includes portions of Tennessee, Kentucky, Illinois, and Missouri.

The case study involved the slope and land cover type layers for the two objectives, as
these roughly correspond to the competing objectives of cost vs. environmental impact
respectively. Slope values were in percent slope, and land cover was already categorized
according to the National Land Cover Database 2006 (Fry et al. 2011). These values and
categories were converted to cell costs according to the terrain cost multipliers
recommended by the Western Electricity Coordinating Council (Mason et al. 2012).
Figure 6 displays graphics of the EISPC data maps used in the analysis, represented as
1000x1000 rasters and classified with high costs in dark colors and low costs in light
colors. The left map represents the environmental impact objective, and the right map
represents the construction cost objective.

18

Figure 6. EISPC maps classified into two objectives: environmental impact (left), and construction
cost (right)

From the raster layers, networks were created according to the guidelines of Huber and
Church (1985), whereby nearby raster nodes were connected with arcs, and the arc cost
labels for each objective assigned as a function of the node costs and the geometry of the
arc itself. Three network versions were generated from the raster, with r radius values of
0, 1, and 2 respectively. The r = 0 network corresponds to an orthogonal grid, r = 1 adds
diagonal “queen’s moves”, and r = 2 adds to that “rook’s moves”. Each higher value r-
network decreases the inherent geometric distortion of routes at the expense of adding
more arcs and thus increasing computation time. Higher order networks are possible, but
the increase in computational effort is not justified due to diminishing returns in spatial
accuracy. According to Huber and Church, “the second order system (r = 2) appears to
provide the most satisfactory trade-off between accuracy and computational burden.”

Experiments were run on the 1000x1000 network on four origin/destination (OD) pairs:
OD1 was from the SW corner to the NE corner, and OD2 was from the NW corner to the
SE corner. The other OD pairs that were tested used starting and ending points closer to
one another. Table 1 lists the networks used, and their properties including the
coordinates of the OD nodes, r-value, number of nodes and arcs, and the number of
supported noninferior solutions for that problem. Cells of the raster are referenced by the
rows and columns, with the top-left corner cell being referenced as (0, 0). Row numbers
increase as one heads south, and column numbers increase as one goes heading east.

19

Table 1. EISPC Test Networks Properties

OD
Name

Origin
Node

Destination
Node r Total

Nodes Total Arcs
Supported

Noninferior
Solutions

1 (999, 0) (0, 999) 0 1,000,000 3,996,000 86

 1 1,000,000 7,988,004 138

 2 1,000,000 15,964,020 266
2 (0, 0) (999, 999) 0 1,000,000 3,996,000 89

 1 1,000,000 7,988,004 153

 2 1,000,000 15,964,020 274

3 (699,
300)

(300, 699) 0 1,000,000 3,996,000 32

 1 1,000,000 7,988,004 69

 2 1,000,000 15,964,020 114

4 (599,
400)

(400, 599) 0 1,000,000 3,996,000 23

 1 1,000,000 7,988,004 39

 2 1,000,000 15,964,020 69

B. Experimental Procedures
In order to test the efficacy of the pNISE approach, simulations were run on different
hardware running Java version 7u51. One of the greatest strengths of fork/join and Java
in general is that it is cross-platform and automatically scalable, thus no modifications are
necessary in order to run the code on different hardware. The first experiment compared
the speedup of the pNISE versus an equivalent serial NISE implementation on a quad-
core laptop running Apple OS X v10.9.2. The second experiment was a scaling
experiment, evaluating the speedup and efficiency of pNISE based on the different
numbers of allocated processors on a 32 core HP server running Red Hat Enterprise
Linux Server release 6.2.

Metrics used to measure performenace included the speedup Sp and parallel efficiency Ep.
Letting p be the number of processors, and Tp be the execution time of a parallel
algorithm on p processors, then T1 is the execution time for the serial (1-processor)
version of the algorithm, and in the ideal scenario, Sp = p and Ep = 1, although this rarely
occurs in parallel computation applications except for trivially simple cases such as
Monte-Carlo simulation. In addition to high speedup values, one also looks for a linear
trend as the number of processors increases. This would indicate that a method is scalable
to a very high number of processors while maintaining a good speedup. As with perfect
speedup, linear speedup trends are typically not possible to maintain except in the case
for very simple problems, since speedup is limited by the amount of parallelism that
exists in a problem instance or program (Amdahl 1967). In the case of pNISE, the two
initial base cases must be completed before commencing the recursive portion of the
algorithm. While the base cases can compute in parallel, the maximum speedup is only 2
for that portion of the calculation, since only two threads exist. Even after the recursive
portion begins, the task division progresses as a binary tree (Figure 5), starting with a
single level of parallelism, followed by two, then four, and so on. For smaller problems,
this time with less parallelism can take a significant amount of the total computation
time, so less speedup will be expected. On the other hand, larger problems use a smaller

20

proportion of their total computation time in these inefficient phases, and thus would
have a higher expected speedup.

C. Computational Results

1. Serial NISE vs. pNISE
The first experiment tested the serial implementation of NISE to the parallel pNise. The
hardware used was an Apple computer with a 3.7 GHz Intel Core i7-3820QM quad-core
processor and 16GB of RAM. Results from this analysis are summarized in

Table 2, comparing runtimes between a serial implementation of NISE using no
concurrency, versus the fork/join pNISE approach. The results show that pNISE was able
to maintain a high speedup in all cases, particularly for the largest problems (OD1 an
OD2), which contain the most supported solutions. All OD1 and OD2 problems
maintained speedup results between 3.32 and 3.56, with good mid-80% efficiencies. The
smaller problems had a lower expected speedup due to a greater proportion of their total
computation time being performed during the inefficient phases of the algorithm. This
was evident with the OD3 problems having speedups of around 3.0 with mid-70%
parallel efficiencies, and the smallest OD4 problems having 2.0-2.57 speedups and
parallel efficiencies dropping to the 50%-65% range. In general, the larger the problem in
terms of computation time and number of solutions, then the more efficient the
parallelization.

Table 2. Serial NISE vs pNISE Runtimes and Speedup

OD r Supported Solns. NISE T1 (seconds) pNISE T4 (seconds) S4 E4
1 0 86 117.490 34.394 3.416 0.854

 1 138 281.087 84.497 3.327 0.832

 2 266 950.571 267.178 3.558 0.889
2 0 89 117.319 35.245 3.329 0.832

 1 153 305.369 87.930 3.473 0.868

 2 274 981.298 281.162 3.490 0.873
3 0 32 29.748 10.019 2.969 0.742

 1 69 100.906 35.481 2.844 0.711

 2 114 285.074 95.004 3.001 0.750
4 0 23 10.484 4.075 2.573 0.643

 1 39 27.545 13.705 2.010 0.502

 2 69 87.031 36.333 2.395 0.599

2. pNISE Scaling
This experiment evaluated how the efficiency of the pNISE approach scales as the
number of processors available is increased. ForkJoinPool(p) can take an optional input
integer argument p that limits the executor service to that specified level of parallelism.
All tests were run on a set of HP ProLiant DL580 Gen8 Server nodes, each with 512GB
of RAM and four 2.0 GHz Intel Xeon X7550 8 core processors for a total of 32 cores per
node. Results of this analysis are listed in Table 3. Only OD1 and OD2 were evaluated,
as the other problems were too small to be able to fully make use of the large number of
processors. Each of the cores on the nodes was approximately half as fast as a core on the

21

Apple computer, but higher speedups were achieved since there were eight times as many
cores per machine.

Table 3. pNISE Scaling on 32 core server nodes

OD1 node 92 OD1 node 93 OD1 node 94
p Tp (seconds) Sp Ep p Tp (seconds) Sp Ep p Tp (seconds) Sp Ep
1 1896.593 1.00 1.00

1 1866.592 1.00 1.00

1 1816.335 1.00 1.00

2 974.751 1.95 0.97

2 945.792 1.97 0.99

2 956.488 1.90 0.95
4 512.794 3.70 0.92

4 522.349 3.57 0.89

4 508.790 3.57 0.89

8 297.818 6.37 0.80

8 286.318 6.52 0.81

8 281.113 6.46 0.81
16 195.762 9.69 0.61

16 190.039 9.82 0.61

16 199.161 9.12 0.57

32 148.945 12.73 0.40 32 138.434 13.48 0.42 32 143.380 12.67 0.40

OD2 node 92 OD2 node 93 OD2 node 94

p Tp (seconds) Sp Ep p Tp (seconds) Sp Ep p Tp (seconds) Sp Ep
1 2007.119 1.00 1.00

1 1999.339 1.00 1.00

1 1949.368 1.00 1.00

2 1029.290 1.95 0.98

2 1021.425 1.96 0.98

2 1019.560 1.91 0.96
4 552.009 3.64 0.91

4 520.650 3.84 0.96

4 517.533 3.77 0.94

8 316.857 6.33 0.79

8 304.344 6.57 0.82

8 295.011 6.61 0.83
16 200.411 10.02 0.63

16 201.775 9.91 0.62

16 198.758 9.81 0.61

32 150.484 13.34 0.42 32 146.503 13.65 0.43 32 147.584 13.21 0.41

In general, speedups increased but the parallel efficiency decreased as the number of
processors used was increased. The reasons for the drop in efficiency as more cores are
used is due to a combination of the program running a longer time with less parallelism
than processors, as well as the effects of increased overhead in coordinating the larger
executor pool. Even so, the parallelization achieved speedups of up to 13.65, significantly
reducing the overall computation time for these large problems. The speedup
performance and deviation from the theoretically ideal efficiency are evident in Figure 7,
which is a plot of speedup vs. processors used. It should be noted that a problem
involving additional objectives or larger number of supported points will likely result in
higher speedups due to their larger problem size. Overall, the results reported here
demonstrate the value and ease of parallelizing the NISE algorithm.

22

Figure 7. Scaling analysis of the speedup on 32 core nodes for OD1 (top) and OD2 (bottom)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Sp
ee

du
p

Processors

OD1

Perfect Speedup

Node 92

Node 93

Node 94

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Sp
ee

du
p

Processors

OD2

Perfect Speedup

Node 92

Node 93

Node 94

23

VI. Improvements to pNISE Efficiency

A. Parallelism Analysis of Basic pNISE

The previous section detailed a method for using Java’s Fork/Join concurrency to
parallelize the search for supported solutions to a biobjective shortest path problem.
While effective at producing 13x speedups on a 32 core processor machine, there is still
room for improvement toward achieving a theoretically ideal 32x speedup. One issue is
that the initial computation of the pNISE approach, where the weightings are 0 and 1, has
only a level of parallelism of 2. When the solutions of these two are used to solve the
next supported point, that has a parallelism of 1. Then next step then splits into two
problems, with a parallelism of 2. Then 4, then 8, then 16, etc. After a few iterations,
eventually there is more parallelism than there are processors and the method uses all
resources efficiently from then on. But up until that point, some processors are waiting
idly until enough parallelism exists to use all of the computational resources.

Figure 8. Parallel threads at each stage of pNISE

Figure 8 displays the parallelism at each stage in a graphical manner, showing the
number of independent threads (i.e. the level of parallelism), Ti, at each stage i of the
algorithm. pNise solves the weighted sum objective initially for 0 and 1 weights using
two independent parallel threads. It then uses those solutions to determine the next
weight, and solves a single problem. That solution is then used in conjunction with the
two initial solutions to determine two more weights, and solve those. This process
continues in a binary tree manner until all branches fathom with no further supported
solutions to be found. Assuming no early fathoming, each stage n after the initial has a
level of parallelism of Tn = 2n-1. This means that for a 32 core computer, six stages of the

0.0# 0.1# T0#=#2#

T1#=#1#

T2#=#2#

T3#=#4#

Tn#=#2n)1#

…
#

1#

1.1# 1.2#

1.1.1# 1.1.2# 1.2.1# 1.2.2#

24

algorithm must be completed (including the initial zero stage) before there are enough
threads in the thread pool to use all of the processors.

B. Improving Initial Parallelism
An improvement to the use of resources during the initial stages, rather than initially just
solving the weighted objective for only values of 0 and 1, is to perform additional solver
iterations on unused processors with weights in-between 0 and 1. This is done using
simple threaded-parallelism, rather than a structured Fork/Join scheme. Essentially, given
p processors, for each processor i = 1…p, execute the weighted sum objective for weight
value of zi = (i-1) / (p-1) (i.e. equal intervals between 0 and 1). For a shortest path
problem, these solutions take approximately the same amount of time to execute, and
thus they all complete at approximately the same time. Once complete, a supported
solution will have been found for each weighted graph, some of which may be repeated
solutions, depending on the size of the problem and the number of processors. If there are
no repeated solutions, then the p solutions can be used to initiate p-1 fork/join instances,
which all get managed by the single Java thread pool in order to efficiently allocate work.
From this point on, the procedure completes itself the same way as the original pNISE, in
that a number of fork/join problems are solved in parallel, but the threads from all
centrally handled by the Java threadpool.

Figure 9. Parallel threads at each stage of the enhanced pNISE,
making use of unused processors in the initial stages

Figure 9 displays this enhanced parallelism graphically. In the best-case scenario, the
method uses all processors in the initial stage, all but one in the next stage, and all
processors again for subsequent stages until computation is complete. This is in contrast
with the original approach using 2 in the initial, then 1, then 2, then 4, then 8, etc. If there
are repeated solutions in the initial stage, then there will be fewer than p-1 fork/join
subproblems; but our experiments on the EISPC network never had fewer than 17
independent solutions in the initial stage, which means than in all cases all processors
were always used by two stages later.

T0"="p#

T1"≤"p&1"

T2"≤"2(p&1)"

Tn"≤"2n&1(p&1)"

…
"

…"0.1" 0.p#0.2" 0.3" 0.4" 0.p&1"

1" 2" 3" p&1"

1.1" 2.1" 3.1" p&1.1"1.2" 2.2" 3.2" p&1.2"

…"

…"

25

C. Computational Results
The same experiments were performed with the enhanced pNISE method, and compared
with the simple pNISE approach. Table 4 shows the results of these computations for the
two most-distant OD pairs: OD1 from the bottom-left corner to the top-right corner of the
map, and OD2 from the top-left corner to the bottom-right corner on the map (see Figure
6). All computations were done on the number 92 node at UCSB’s CSC for hardware
consistency. On the left side of the table are computations using the simple pNISE, and
on the right are using the enhanced pNISE. As the number of processors increase, the
overall speedup and efficiencies improve, in the case of the 32 core experiment going
from a speedup of 12.73 to a speedup of 15.32 for OD1, and going from a speedup of
13.24 to a speedup of 15.31 for OD2.

Table 4. Comparison of simple pNISE and enhanced pNISE on 32 core server nodes

Simple pNISE – OD1 node 92 Enhanced pNISE – OD1 node 92
p Tp (seconds) Sp Ep p Tp (seconds) Sp Ep
1 1896.593 1.00 1.00

1 1894.384 1.00 1.00

2 974.751 1.95 0.97

2 963.231 1.97 0.98
4 512.794 3.70 0.92

4 492.764 3.84 0.96

8 297.818 6.37 0.80

8 286.472 6.61 0.83
16 195.762 9.69 0.61

16 173.640 10.91 0.68

32 148.945 12.73 0.40 32 123.663 15.32 0.48

 Simple pNISE – OD2 node 92 Simple pNISE – OD2 node 92
p Tp (seconds) Sp Ep p Tp (seconds) Sp Ep
1 2007.119 1.00 1.00

1 2004.572 1.00 1.00

2 1029.290 1.95 0.98

2 1007.387 1.99 0.99
4 552.009 3.64 0.91

4 519.601 3.86 0.96

8 316.857 6.33 0.79

8 282.882 7.09 0.89
16 200.411 10.02 0.63

16 177.483 11.29 0.71

32 150.484 13.34 0.42 32 130.963 15.31 0.48

These improvements are also evident when comparing the speedups graphically as
depicted in Figure 10, where the benefits of the enhanced pNISE become more
pronounced as the number of processors increase.

26

Figure 10. Speedup comparison between Simple pNISE and Enhanced pNISE for OD1 (top) and
OD2 (bottom)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Sp
ee

du
p

Processors

OD1, Node 92

Perfect Speedup
Simple pNISE
Enhanced pNISE

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Sp
ee

du
p

Processors

OD2, Node 92

Perfect Speedup
Simple pNISE
Enhanced pNISE

27

VII. Concluding Remarks

This work developed a “simple-to-program” parallel implementation of the NISE method
for computing the supported non-dominated solutions to biobjective network
optimization problems, called pNISE. This method uses high-level fork/join framework
within the Java 7 concurrency API to make this method parallel without the difficult
complexities of traditional low-level message-passing parallel languages. After
describing how to develop this algorithm, a transmission line corridor location case study
using a large real-world data set demonstrated that the pNISE was effective at taking
advantage of modern multi-core computer processors to significantly reduce the
computation time of the biobjective supported solution set. Additional enhancements to
the pNISE approach were then described, which further improved the parallel
performance of the method.

The pNISE approach is applicable to all network problems where there exist fast,
specialized optimal solution algorithms. In addition to the biobjective shortest path
problem evaluated in this paper (Raith and Ehrgott 2009, Medrano and Church 2014),
other problems that could be solved with pNISE include biobjective variants of the
minimum spanning tree problem (Steiner and Radzik 2008), classical transportation
problem (Aneja and Nair 1979), assignment problem (Przybylski et al. 2008), maximum
flow problem (Royset and Wood 2007), and minimum-cost flow problem (Hamacher et
al. 2007), just to name a few. With the continuing expansion of big data, scientists and
engineers must tackle larger network problems than ever before, requiring novel tools to
enable multicriteria analysis and optimization on these massive data sets using modern
computing resources. Using simple general-purpose parallel tools such as pNISE to speed
up computation allows a designer to focus less time and energy on the generation of
alternative solutions, and more time on model development and analysis to provide the
best solutions to these challenging problems.

28

References

Amdahl, G.M., (1967). Validity of the single processor approach to achieving large scale
computing capabilities. AFIPS, Atlantic City, N.J.: ACM, 483-485.

Aneja, Y.P. & K.P.K. Nair, (1979). Bicriteria transportation problem. Management
Science, 25, 73-78.

Breschan, J.R. & H.R. Heinimann, (2013). Ecoforest–automatic design of forest patterns
attractive to wildlife in an artificial landscape. Journal of Applied Operational
Research, 5, 125-134.

Cherkassky, B.V., A.V. Goldberg & T. Radzik, (1996). Shortest paths algorithms: Theory
and experimental evaluation. Mathematical programming, 73, 129-174.

Clímaco, J.C.N. & M.M.B. Pascoal, (2012). Multicriteria path and tree problems:
Discussion on exact algorithms and applications. International Transactions in
Operational Research, 19, 63-98.

Cohon, J.L., R.L. Church & D.P. Sheer, (1979). Generating multiobjective trade-offs: An
algorithm for bicriterion problems. Water Resources Research, 15, 1001-1010.

Current, J.R., C.S. Revelle & J.L. Cohon, (1990). An interactive approach to identify the
best compromise solution for two objective shortest path problems. Computers &
Operations Research, 17, 187-198.

Daskalakis, C., I. Diakonikolas & M. Yannakakis, (2010). How good is the chord
algorithm? Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete AlgorithmsSociety for Industrial and Applied Mathematics, 978-991.

Dial, R.B., (1979). A model and algorithm for multicriteria route-mode choice.
Transportation Research Part B: Methodological, 13, 311-316.

Dijkstra, E.W., (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1, 269-271.

Ehrgott, M. & M.M. Wiecek, (2005). Mutiobjective programming. Multiple criteria
decision analysis: State of the art surveys. Springer, 667-708.

Erb, S., M. Kobitzsch & P. Sanders, (2014). Parallel bi-objective shortest paths using
weight-balanced b-trees with bulk updates. In Gudmundsson, J. & Katajainen, J.
eds. Experimental algorithms. Springer International Publishing, 111-122.

Fischer, D.T. & R.L. Church, (2003). Clustering and compactness in reserve site
selection: An extension of the biodiversity management area selection model.
Forest Science, 49, 555-565.

Fry, J.A., G. Xian, S. Jin, J.A. Dewitz, C.G. Homer, Y. Limin, C.A. Barnes, N.D. Herold
& J.D. Wickham, (2011). Completion of the 2006 national land cover database for
the conterminous united states. Photogrammetric Engineering and Remote
Sensing, 77, 858-864.

Garey, M.R. & D.S. Johnson, (1979). Computers and intractability, Freeman San
Francisco, CA.

29

Hamacher, H.W., C.R. Pedersen & S. Ruzika, (2007). Multiple objective minimum cost
flow problems: A review. European Journal of Operational Research, 176, 1404-
1422.

Huber, D.L. & R.L. Church, (1985). Transmission corridor location modeling. Journal of
Transportation Engineering-Asce, 111, 114-130.

Kasprzyk, J.R., P.M. Reed, B.R. Kirsch & G.W. Characklis, (2009). Managing
population and drought risks using many‐objective water portfolio planning under
uncertainty. Water Resources Research, 45.

Kuiper, J., D.P. Ames, D. Koehler, R. Lee & T. Quinby, (2013). Web-based mapping
applications for solar energy project planning. Idaho National Laboratory,
Preprint, INL/CON-13-28372.

Lea, D., (2000). A java fork/join framework. Proceedings of the ACM 2000 conference
on Java GrandeACM, 36-43.

Lea, D., 2003. Concurrency jsr-166 interest site [online].
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html.

Lea, D., J. Bowbeer, D. Holmes, B. Goetz & T. Peierls, 2004. Jsr 166: Concurrency
utilities [online]. Java Community Process. Available from:
http://www.jcp.org/en/jsr/detail?id=166.

Liebman, J.C., (1976). Some simple-minded observations on the role of optimization in
public systems decision-making. Interfaces, 6, 102-108.

Mason, T., T. Curry & D. Wilson, (2012). Capital costs for transmission and substations.
Black & Veatch prepared for WECC, Proj. No. 176322.

Medaglia, A.L., J.G. Villegas & D.M. Rodríguez-Coca, (2009). Hybrid biobjective
evolutionary algorithms for the design of a hospital waste management network.
Journal of Heuristics, 15, 153-176.

Medrano, F.A. & R.L. Church, (2014). Corridor location for infrastructure development:
A fast bi-objective shortest path method for approximating the pareto frontier.
International Regional Science Review, 37, 129-148.

Moore, G.E., 1965. Cramming more components onto integrated circuits. McGraw-Hill
New York, NY, USA.

Przybylski, A., X. Gandibleux & M. Ehrgott, (2008). Two phase algorithms for the bi-
objective assignment problem. European Journal of Operational Research, 185,
509-533.

Przybylski, A., X. Gandibleux & M. Ehrgott, (2010). A recursive algorithm for finding
all nondominated extreme points in the outcome set of a multiobjective integer
programme. INFORMS Journal on Computing, 22, 371-386.

Pyke, C.R. & D.T. Fischer, (2005). Selection of bioclimatically representative biological
reserve systems under climate change. Biological Conservation, 121, 429-441.

30

Raith, A. & M. Ehrgott, (2009). A comparison of solution strategies for biobjective
shortest path problems. Computers & Operations Research, 36, 1299-1331.

Reklaitis, G.V., (1996). Overview of scheduling and planning of batch process
operations. Batch processing systems engineering. Springer, 660-705.

Royset, J.O. & R.K. Wood, (2007). Solving the bi-objective maximum-flow network-
interdiction problem. INFORMS Journal on Computing, 19, 175-184.

Salgado, R. & E. Rangel Jr, (2012). Optimal power flow solutions through multi-
objective programming. Energy, 42, 35-45.

Sanders, P. & L. Mandow, (2013). Parallel label-setting multi-objective shortest path
search. Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium onIEEE, 215-224.

Schilling, D.A., (1982). Strategic facility planning: The analysis of options. Decision
Sciences, 13, 1-14.

Solanki, R.S., (1986). Techniques for approximating the noninferior set in linear
multiobjective programming problems with several objectives. Ph.D. Johns
Hopkins University.

Soliman, S.a.-H. & A.-a.H. Mantawy, (2012). Optimal power flow. Modern optimization
techniques with applications in electric power systems. Springer, 281-346.

Steiner, S. & T. Radzik, (2008). Computing all efficient solutions of the biobjective
minimum spanning tree problem. Computers & Operations Research, 35, 198-
211.

Tarapata, Z., (2007). Selected multicriteria shortest path problems: An analysis of
complexity, models and adaptation of standard algorithms. International Journal
of Applied Mathematics and Computer Science, 17, 269-287.

Weber, C.A. & L.M. Ellram, (1993). Supplier selection using multi-objective
programming: A decision support system approach. International Journal of
Physical Distribution & Logistics Management, 23, 3-14.

