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This report has been developed as a part of the corridor location research project at the 
University of California, Santa Barbara. The goal of this project is to take a fresh look at 
the process of corridor location, and develop a set of algorithms that compute path 
alternatives using a foundation of solid geographical theory in order to offer designers 
better tools for developing quality alternatives that consider the entire spectrum of viable 
solutions. And just as importantly, as data sets become increasingly massive and present 
challenging computational elements, it is important that algorithms be efficient and able 
to take advantage of parallel computing resources. Please cite this report as: Medrano, 
FA, and RL Church (2014) “A Parallel Biobjective Shortest Path Algorithm” (Report 
#12-14-01), GeoTrans Laboratory, UCSB, Santa Barbara CA. 
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I. Introduction 

Exponential growth in the capabilities of computerized data collection and analysis over 
the past few decades has resulted in the availability of massive data sets and networks for 
modeling and simulation. Traditional problems of public systems development such as 
corridor location for new transmission lines, pipelines, roadways and railways have 
always been considered a wicked optimization problem (Liebman 1976), and are now 
even more complicated given higher resolutions of satellite imagery for generating finer 
grained terrain network models. New frontiers in the analysis of large network data sets 
include the study of relationships between social media users (1.23 billion active 
Facebook users as of January 2014), and grouping by attributes within large online data 
repositories (Flickr contained over 8 billion photographs as of March 2013, a large 
portion of which are geotagged). These, and countless other recent data sources have 
served as the impetus for new terminology such as big data for working with data sets far 
too large to be processed by traditional database management tools, and the field of 
analytics for discovering meaningful results from these overwhelmingly large data sets. 

As data sets increase in size, the computation required to do meaningful analysis on the 
data also increases. Moore’s Law (Moore 1965) states that the number of transistors 
capable of being placed in an integrated circuit, and thus the computational power of a 
CPU, doubles every two years. This rule has held true since its inception in 1965 and 
until the early 2000’s was mostly realized through faster processor clock speeds. In 2004, 
thermal limitations prevented any further increase in processor clock speeds, creating a 
paradigm shift from faster clocks to multiple processor cores per CPU. Legacy 
programming code though cannot take advantage of multiple cores, and requires 
extensive rewrites to a parallel language in order to use the full capabilities of modern 
computers. This is not a simple task, as parallel computing introduces problems such as 
race conditions and deadlocks, which can result in non-deterministic behavior, infinite 
loops, or runtime failures. Proper implementation of low-level parallel libraries such as 
MPI, OpenMP, and UPC require advanced programming knowledge and sophisticated 
control of data transfer between processors. To address the difficulty of low-level 
schemes, higher-level libraries have emerged that simplify concurrent programming by 
hiding many of the low-level nuts and bolts. Examples include Cilk++ for C++, Grand 
Central Dispatch for Objective C, the Parallel Computing Toolbox for Matlab, and the 
concurrency libraries for Java. While these libraries do not eliminate all of the perils of 
concurrent programming, they do allow the programmer to focus more on big picture 
algorithm issues rather than the minute details of message passing schemes. 

This work presents a general framework for using one such library, the Java fork/join 
library, for efficiently solving multi-objective network optimization problems in modern 
multi-core computers. Java is the only high-level language to offer a structured fork/join 
library optimized for divide-and-conquer algorithms, and is thus particularly suitable for 
the Non-Inferior Set Estimation (NISE) approach that is efficient at calculating the 
supported solutions of a multi-objective problem (Cohon et al. 1979). Section 0 
introduces the problem and defines variables used in later pseudocode. Section 0 begins 
with a description of the serial Non-Inferior Set Estimation (NISE) algorithm (Cohon et 
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al. 1979) for computing supported multi-criteria solutions, and then expands this to a 
proposed parallel implementation, called pNISE. Section IV presents a case study using 
pNISE for solving a biobjective shortest path problem on a large raster GIS network. 
Section V discusses some computational case study of this application to a biobjective 
shortest path problem. Section VI presents some improvements to pNISE for instances 
with large number of processors. Finally, section 0 provides conclusions and enumerates 
other problems where this approach could be beneficial. 
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II. Background 

Multiobjective optimization involves the task of determining noninferior solutions when 
considering multiple conflicting objectives, and is inherently more complicated than a 
problem’s single-objective counterpart due to the added objective dimensionality. Most 
of past work in multi-objective modeling is first described for the use of two objectives, 
as this is usually the simplest case. Accommodating three or more objectives necessitates 
more complicated bookkeeping than what is required for two objectives, as some facets 
of the intersecting neighboring solutions in three or higher dimensions may lie in the 
interior rather than on the boundary of the convex polytope (Solanki 1986). Aside from 
this issue however, the fundamental theorems used to solve for tradeoffs in two 
objectives can be relatively easily expanded to three or more objectives. For this reason, 
most of the literature is concerned with the resolution of biobjective problems. This paper 
takes this same approach and restricts the discussion to biobjective problems as well. 
Further discussion of the nuances and approaches for problems with more than two 
objectives can be found in Przybylski et al. (2010). 

In 1979, three different papers appeared in the published literature that addressed the 
problem of finding efficient solutions to biobjective optimization problems. (Dial 1979) 
developed a process that involved finding up to a pre-specified number of supported 
points to a biobjective shortest path problem, Aneja and Nair (1979) developed an 
approach to find all supported points to a biobjective transportation problem, and Cohon 
et al. (1979) developed a process to find non-dominated solutions to biobjective linear 
programming problems. Overall, all three techniques are quite similar, but do differ in 
their main focus. For example, Dial’s approach runs until it finds a certain number of 
solutions or finds the complete tradeoff curve. The choice of problems solved, and hence 
the resolved tradeoff curve is based upon a recursion formula taking problems in order. 
Aneja and Nair’s approach is similar to that of Dial’s except it does not stop until it has 
resolved all parts of the tradeoff curve. Cohon et al. (1979) show how lower and upper 
bounds on the tradeoff curve can be defined as supported points are added to the tradeoff 
curve. This allows one the opportunity to resolve at each iteration that portion of the 
curve with the greatest estimation error. This technique is called the Non-Inferior 
Solution Estimation (NISE) technique. The NISE technique will either generate all 
supported points on a tradeoff curve within a set estimation bound limit, or can be 
executed to completion to generate all supporting points as suggested by Aneja and Nair. 
In this paper, we adopt the NISE method of Cohon et al. as it can be considered the most 
general of the three techniques. NISE (also known by various other names) has become 
the standard method in the literature for solving the supported solutions of a 
multiobjective problem, due to its efficiency and applicability with a wide range of solver 
techniques (Current et al. 1990, Ehrgott and Wiecek 2005, Daskalakis et al. 2010, 
Clímaco and Pascoal 2012). It is used as part of the preferred approach in a wide range of 
multiobjective applications, including forestry and agriculture (Fischer and Church 2003, 
Pyke and Fischer 2005, Kasprzyk et al. 2009, Breschan and Heinimann 2013), 
transmission and power flow systems (Salgado and Rangel Jr 2012, Soliman and 
Mantawy 2012, Medrano and Church 2014), industrial operations and logistics (Schilling 
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1982, Weber and Ellram 1993, Reklaitis 1996), and medical operations (Medaglia et al. 
2009), just to name a few. 

While NISE was originally presented within the context of biobjective linear 
programming problem, it can be applied to finding the supported solutions to biobjective 
Integer Programming (IP) or Mixed Integer Programming (MIP) problems as well. 
Modern first-rate MIP solvers have parallelism built-in to take advantage of multicore 
architectures; but specialized network optimization algorithms can often solve graph 
problems more efficiently than a general MIP solver. Tarapata (2007) published a 
comparison between solving a multiobjective shortest path problem on CPLEX vs. using 
a Dijkstra solver, and found that on large problems Dijkstra’s computation times were 70 
to 80 times faster than CPLEX. 

IP problems can also have non-convex, non-inferior solutions known as unsupported 
solutions. Unsupported solutions are much more difficult to compute, as solving for those 
is equivalent to adding a knapsack constraint to the problem, which has been proven to be 
NP-hard (Garey and Johnson 1979). Some work has been published by Sanders and 
Mandow (2013) on a parallel biobjective shortest path algorithm for unsupported 
solutions, but this method introduces complicated and expensive data structures and 
introduce significant computational overhead in comparison to the fastest serial methods. 
A more recent method has been published that tries to reduce this overhead (Erb et al. 
2014), although it is difficult to judge its effectiveness since the publication lacks any 
comparison with the fastest serial methods. This report focuses on finding only the 
supported solutions of either an LP or IP problem in parallel.  

The methods described in this paper are applicable to a variety of specialized network 
algorithms, including but not limited to biobjective variants of the minimum spanning 
tree problem, classical transportation problem, assignment problem, maximum flow 
problem, and the minimum cost flow problem. This work has chosen to apply the NISE 
approach though to a biobjective shortest path problem using a form of Dijkstra’s shortest 
path algorithm (Dijkstra 1959) with a binary heap priority queue (Cherkassky et al. 1996) 
as the optimization solver. As a point of reference, we compared computation times of 
our Dijkstra solver implementation to the native Matlab version on a single-objective 
problem. The Matlab function is called graphshortestpath(), and also uses a binary 
heap priority queue. When solved on various problems on two different 1000x1000 raster 
network data sets, the Matlab runtimes were consistently at least 2.2x longer than our 
Java version. 

The biobjective shortest path problem is defined as follows. Let G = (N, A) be a directed 
graph network with node set N = {u1,  u2, ... ,  un} and arc set A = {(u1,  v1), ... , (um,  vm )} . 
Each arc (u,v)∈A  has associated with it two positive real costs cuv  =  (cuv

1 , cuv
2 ) . The 

biobjective shortest path problem aims to solve for the minimum-cost paths from a source 
node s∈N to a destination node t ∈N that minimizes two, often competing, objectives, 
z1 and z2. Each arc has associated with it a decision variable xuv that is equal to 1 if it lies 
on the optimal shortest path, and 0 otherwise. This results in the following problem 
formulation: 
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min z1(x) = cuv
1 xuv

(u,v)∈A
∑

min z2 (x) = cuv
2 xuv

(u,v)∈A
∑

s.t. xvu
(u,v)∈A
∑ − xvu

(v,u)∈A
∑ =

1    if u = s
-1   if u = t
0    if u ≠ s, t

%

&
'

(
'

xuv = 0,1{ }  for all (u,v)∈ A

      ( 1 ) 

While the above formulation contains two distinct objectives, supported solutions may be 
found by solving the weighted combined single-objective formulation, using the weight 
α, where 0 ≤ α ≤ 1. 

min zC (x) = α × z1(x) + (1−α)× z2 (x)       ( 2 ) 

Different supported solutions may be computed by varying the weight between the two 
objectives. Setting α = 1 finds the optimal solution considering only the first objective, 
while setting α = 0 finds the optimal solution with respect to the second objective, and 
setting α to something in between to find compromise solutions on the trade-off curve. 
While it is possible to find a number of supported solutions by iteratively stepping the 
weight value, the NISE method (described in the next section) specifies a procedure to 
find all distinct supported solutions with a minimum number of total solver iterations, or 
to solve for a set of supported points and stop when all points within an estimation bound 
have been defined. 

Each solution to the combined objective of equation generates an s-t path that is a 
supported non-dominated solution, i.e. σi is an optimal solution for a given α. 
Additionally, let xuv (σ i )  be the value of the variable xuv in the σi solution, where the 
value is 1 if arc (u, v) is on the shortest path, and 0 otherwise. For a given path solution 
σi, the z1(σi) is its objective value with respect to the first objective, and z2(σi) is its 
objective value with respect to the second objective, as defined below. The term zC(σi, α) 
represents the combined weighted objective according to the weight α. 

 z1(σ i ) = cuv
1 xuv (

(u,v)∈A
∑ σ i )          ( 3 ) 

 z2 (σ i ) = cuv
2 xuv (

(u,v)∈A
∑ σ i )        ( 4 ) 

 zC (σ i,α ) =α × z1(σ i )+ (1−α )× z1(σ i )      ( 5 ) 

The set Ψ = {σ1,  σ 2, ... ,  σ p} is the set of all supported non-dominated solutions to the 
problem, and form a convex Pareto frontier when plotted in objective space. 
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III. Supported Solution Search 

A. Serial Non-Inferior Set Estimation (NISE) 

The NISE method is used to find a set or subset of noninferior solutions of a biobjective 
linear, integer, or mixed-integer programming problem. Here, we describe this method to 
find all supported points of a trade-off curve. NISE begins by initially computing the 
single-objective solutions for each objective. In the biobjective case, these involve using 
weights α = 0 and α = 1. Once these solutions are determined, a weighting is chosen with 
equation 6 such that the zc value for the two solutions are equal 

 α =
z2 (σ i )− z2 (σ j )( )

z1(σ i )− z1(σ j )( )+ z2 (σ i )− z2 (σ j )( )     ( 6 ) 

Figure 1 graphically depicts how the selection of α creates an objective line where the 
two initial solutions, σ1 and σ2, have equal combined objective values. With this 
weighting, the problem can be solved again to find a solution that minimizes this 
weighted combined objective, denoted by σ3. 

 

Figure 1. Objective space: σ3 solves min zc(x) with weight α 

After solving for σ3, new weightings can be determined to find solutions that minimize 
the combined objective between the new adjacent supported points. Figure 2 shows a new 
objective line to find a solution σ4 between σ1 and σ3, and another objective line for 
finding a solution σ5 between σ3 and σ2. If a combined objective returns a solution that 
does not improve the combined objective from the previously found solutions, then there 
are no supported points that expand the convex hull between those respective solutions 
and the search in that region is terminated. This process continues until all adjacent points 
have not had any new solutions found between them, and thus all supported solutions 
have been found. 
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α such that zc(σ1,α) = zc(σ2,α) 
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Figure 2. Objective space: supported solutions between σ1 and σ3, and between σ3 and σ2 

Overall, NISE is a divide-and-conquer approach, and the general algorithm can be 
represented compactly with recursive function calls. The following pseudocode uses the 
NISE method for solving a biobjective shortest path problem using an optimal shortest 
path solver. The solver used in this work was Dijkstra’s Algorithm with a binary heap 
priority queue (Cherkassky et al. 1996), although other specialized network algorithms 
could be used instead. In addition to the minimization problem presented, the code 
applies equally to a maximization problem by reversing the inequality in the dominance 
check. 
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Preliminary Algorithm: NISE for Biobjective Shortest Paths 
 
// zC(x) = α*z1(x) + (1– α)*z2(x) 
// Ψ = {σ1, σ2,…, σp} = the set of supported non-dominated solutions 
// Dij(α) solves a shortest s-t path with Dijkstra’s algorithm using a 
// combined objective weighted by α 
// SetA(σi, σj) selects next value of α based on the z1 and z2 values of 
// σi and σj 
// RecursiveNISE(σi, σj) computes a supported solution between σi and σj 
 
function: main 
α = 1     // minimize first objective 
σi = Dij(α) 
α = 0     // minimize second objective 
σj = Dij(α) 
Ψ = σi 
Ψ += RecursiveNISE(σi, σj) // begin recursive NISE procedure 
 
function: RecursiveNISE(σi, σj) 
α = SetA(σi, σj)   // calculate alpha weighting, equation 6 
σk = Dij(α)    // solve composite objective 
if (zC(σk, α) < zC(σi, α))       // if soln improves the composite 
objective 
Ψ += RecursiveNISE(σi, σk) 
Ψ += RecursiveNISE(σk, σj) 
else 
Ψ += σj    // else if no improvement found, return σj 
end 
return Ψ  
 

The above algorithm though is a simplified version, and does not account for various 
anomalies that may occasionally arise. The next section lists these anomalies and how to 
deal with them, followed by a more comprehensive pseudocode that accounts for these 
scenarios. 

B. NISE Anomalies 

There are a few situations where one must take care in implementing the NISE method to 
avoid false-positive solutions or a non-terminating recursion causing a stack overflow 
exception. The following details these possible pitfalls, and how to avoid them. 

1. Weakly Dominated Single Objective Solutions 
The initial stage of the method requires solving the problem for each single objective. 
Oftentimes, there may exist numerous solutions that equally optimize that one objective. 
With regard to that objective, any of those solutions is optimal, yet they may perform 
quite differently from one-another when considering the other objectives in the model. In 
fact, in the initial single-objective base cases, an optimal solution may be returned that is 
weakly dominated by other equally optimal solutions. Such a solution is considered 
inferior, and should be omitted from the final non-dominated solution set. 
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For example, suppose one is minimizing z1(x) in the initial base case, as shown in Figure 
3. The solver may return the solution σ1 , which is a minimum feasible solution to the 
problem with respect to objective 1. But there may exist another solution that was not 
found by the solver, ′σ1 , that weakly dominates σ1 , i.e. z1(σ1) = z1( ′σ1)  and 
z2 (σ1) > z2 ( ′σ1) . 

 

Figure 3. Weakly dominated solution that minimizes z1(x) 

Later in the algorithm, ′σ1  will be found as the solution to a combined objective where α 
is very close to 1. A proper algorithm will put in place mechanisms to detect that it 
dominates σ1  in order to eliminate it from the final solution. 

2. Multiple Equal Value Composite Solutions 
Another anomaly arises when solving a composite objective function, i.e. 0 < α < 1, 
where there are numerous solutions with the same composite objective value. Figure 4 
shows what this scenario would look like when plotting the solutions in objective space. 
In this case, for a given α, zC (σ i,α ) = zC (σ j,α ) = zC (σ k,α ) . If σ i  and σ k  were the points 
used to determine α, and the solution returned is σ j , then there is no problem. σ j  is a 
non-dominated solution that is on the convex Pareto-frontier. While its presence does not 
change the shape of the convex region, i.e. it is not a corner point; it is an optimal trade-
off solution that should be kept. The NISE solution approach does not guarantee finding 
all solutions that are not corner points, but some may be found by chance. 

min z1(x) 
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Figure 4. Multiple composite objective optimal solutions 

The problem arises when σ i  and σ j  are the “outer points”, i.e. RecursiveNISE(σi, σj), 
and the solution returned is σ k . If that point is kept, then the algorithm splits and runs 
RecursiveNISE(σi, σk) and RecursiveNISE(σk, σj). If RecursiveNISE(σi, σk) 
returns σ j , then there is a situation of an endless cycle alternating between those 
solutions. With a recursive function, this will result in a stack overflow error, as the 
function will continue recursing ad infinitum until memory runs out. 

In order to prevent this error and also to keep non-dominated solutions that are not corner 
points, rather than checking if an improvement is made to the combined objective zc, a 
different criterion should be used to control if the function should recursively split. The 
alternative is to check if the returned solution is lexicographically in-between the outer 
points. If it is, then keep and split. Otherwise, the solution is lexicographically outside of 
the points, and the recursion ends and returns the appropriate solution. The next section 
revises the previous NISE pseudocode to take into account these two anomaly situations. 
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C. Complete NISE Pseudocode 
Complete Algorithm: NISE for Biobjective Shortest Paths 
 
// zC(x) = α*z1(x) + (1– α)*z2(x) 
// Ψ = {σ1, σ2,…, σp} = the set of supported non-dominated solutions 
// Dij(α) solves a shortest s-t path with Dijkstra’s algorithm using a 
// combined objective weighted by α 
// SetA(σi, σj) selects next value of α based on the z1 and z2 values of 
// σi and σj 
// RecursiveNISE(σi, σj) computes a supported solution between σi and σj 
 
function: main 
α = 1     // minimize first objective 
σi = Dij(α) 
α = 0     // minimize second objective 
σj = Dij(α) 
Ψ = σi 
Ψ += RecursiveNISE(σi, σj) // begin recursive NISE procedure 
if (z1(σ1) == z1(σ2))  // if σ2 dominates σ1 
Σ.removeFirstElement() 
end 
 
function: RecursiveNISE(σi, σj) 
α = SetA(σi, σj)   // calculate alpha weighting, equation 6 
σk = Dij(α)    // solve composite objective 
// if σk is lexicographically between σi and σj 
if ((z2(σk) < z2(σi)) and (z1(σk) < z1(σj)))   
if (z2(σk) == z2(σj))  // if σk weakly dominates σj 
Ψ += RecursiveNISE(σi, σk) 
else if (z1(σk) == z1(σi)) // if σk weakly dominates σi  
Ψ += σk 
Ψ += RecursiveNISE(σk, σj) 
else    // else σk is non-dominated 
Ψ += RecursiveNISE(σi, σk) 
Ψ += RecursiveNISE(σk, σj) 
end 
else 
Ψ += σj    // else if no improvement found, return σj 
end 
return Ψ 
 

D. Java Fork/Join Framework 

Java is a cross-platform object-oriented programming language that is ubiquitous in 
scientific computing, as well as in general desktop and mobile computing. It was 
originally released by Sun Microsystems in 1995, and is currently owned and actively 
developed by Oracle Corporation. One of the areas of Java language development since 
2000 has been in its concurrency libraries. In September 2004, Java 5 was released which 
for the first time included the java.util.concurrent application programming interface 
(API) that included various low-level tools for simultaneously processing numerous 
threads. Developers saw a further need for higher-level concurrency tools that were 
implicitly scalable over a wide variety of hardware configurations, and the fork/join 
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framework was introduced by Doug Lea to address this need though the Java Community 
Process as a Java Specification Request, JSR 166 (Lea 2000, Lea 2003, Lea et al. 2004). 

Fork/join is specifically designed to handle the difficult task of adding concurrency to 
recursive divide-and-conquer methods. Concurrent divide-and-conquer methods solve a 
problem by recursively splitting them into small subtasks, that are then solved in parallel, 
waiting for them to complete, and then composing results into a final answer. This 
approach is the basis of efficient algorithms for all kinds of problems, such as sorting 
(e.g. quicksort, merge sort), multiplying large numbers, syntactic analysis (e.g. top-down 
parsers), convolution filters for digital image processing, and computing discrete Fourier 
transform (FFTs). The NISE algorithm described in this paper, used for determining the 
supported solutions to a biobjective optimization problem, also follows this general 
design paradigm. 

The work breakdown of a divide-and-conquer algorithm tends to take a tree structure, 
where the task is split numerous times until a stopping criterion is reached, as shown 
graphically in Figure 5. For sorting or image processing, the stopping criteria may be 
dividing the problem into adequately small sub-problems; or in the case of NISE, the 
division stops for a specific region of the trade-off curve when no new supported solution 
is found in between two others. At this point, the results of the computation are sent back 
up the tree hierarchy, implicitly retaining the organized structure of the division, until all 
results have reached the top level and the final result is complete. Fork/join task trees 
may be symmetrical, as is typically the case for most divide-and-conquer algorithms, but 
may also be asymmetrical, as is the case with NISE. 

 

Figure 5. Fork/join task division 

The Java implementation of fork/join uses a ForkJoinPool executor to manage the 
asynchronous concurrent execution of tasks. Tasks to be managed by the ForkJoinPool 
must implement the ForkJoinTask interface. ForkJoinTask objects feature two 
methods for performing their function: the fork() method launches a new task as a 
subtask of the one that called it, allowing it to be executed asynchronously; and, the 
join() method returns the results to the higher level task. A task cannot be joined until 
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all of its sub-tasks have joined into it, ensuring that all computations are completed 
before going back up the hierarchy. The Java implementation of ForkJoinPool is 
capable of “work stealing”, which actively steals and reallocates tasks when a processor 
is waiting for a sub-task to complete and there are other pending tasks remaining to be 
computed. This helps to ensure balanced workloads across processors, improving the 
overall parallel efficiency of the application. 
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IV. Parallel NISE (pNISE) 

A. Parallel Divide and Conquer 

The general usage of the fork/join design pattern takes the following form: 

if (my portion of the work is small enough) 
 do the work directly 
else 
 split my work into two pieces 
 invoke the two pieces and wait for the results 
end 
 
For the purposes of NISE though, it is necessary to first run a solver iteration in order to 
determine whether to divide the problem once more. To accomplish this, the following 
modification to the design pattern is used: 

optimize weighted composite objective 
if (the problem is indivisible) 
 return the result 
else 
 split problem into two sub-problems 
 invoke the two sub-problems and wait for the results 
 return list of results 
end 
 
 
Finer nuances are necessary for handling if a weakly dominated extreme point is 
detected, in which case then the program needs to create a single sub-problem without a 
split. 

B. Parallel Single-Objective Extreme Points 

In addition to the binary tree generated from the recursive task division, the initial base 
case of the NISE algorithm requires two independent runs (in the biobjective case) of a 
network optimization solver. These can also be set up to be run in parallel, and since this 
is a general iterative procedure (rather than recursive), the simplest way of doing so is 
with multithreading using Java’s Thread object. In this case, the solver is initialized 
within two independent threads, run simultaneously, and the join() method of Thread is 
used to wait until both threads have completed before proceeding with the remainder of 
the program. 

If desired, one could avoid threads altogether, and continue using fork/join for the two 
base cases. While fork/join is intended for use on recursive functions, one can trick it for 
use on an iterative function by creating a wrapper class. Below is a pseudocode 
generalization of how this wrapper class is structured, called SolverWrapper. It takes 
two arguments: the first is a control boolean, and the second is the α value. One begins by 
calling SolverWrapper(true,-1), where in this case the second argument is redundant 
and can take on any value. With an initial control argument of true, the program 
proceeds to split into two sub-problems, which are solved simultaneously using the 
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fork/join functionality. Each sub-problem is given a control argument of false and α 
values of 0 and 1 respectively, corresponding to the two single-objective optimizations. 

class SolverWrapper(boolean toggle, double a)   
if (toggle == false) 
 Solve(a)  // optimize with composite weight a 
 return result 
else 
 SolverWrapper(false,0) 
 SolverWrapper(false,1) 
 return list of results 
end 
 
Experiments indicated that no significant parallel performance difference between using 
threads or a wrapper fork/join class for the initial base cases, possibly due to the fact that 
only two problems were being solved. 
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V. Computational Case Study 

A. Test Networks 

While applicable to numerous multi-criteria network problems, the motivation behind 
this work was to develop tools to better enable the generation of noninferior alternatives 
to a transmission line corridor location problem. Thus, the performance of the pNISE 
procedure was evaluated by running a biobjective shortest path analysis on a GIS-based 
raster data set assembled and used by the Eastern Interconnection States' Planning 
Council (EISPC). This data set is intended to facilitate the identification of potential 
energy sites and transmission line corridors within the EISPC region, which spans 39 
eastern U.S. states, Washington D.C., and 8 Canadian provinces. The data was assembled 
jointly by Argonne National Laboratory, Oak Ridge National Laboratory, and the 
National Renewable Energy Laboratory as a part of their EISPC’s Energy Zones Study 
(EZS) (Kuiper et al. 2013). 

The EZS data contains numerous geographical information layers that would be used in a 
suitability analysis for locating new energy infrastructure, and is available through the 
EISPC Energy Zones Mapping Tool (EZMT, eispctools.anl.gov). The EZS includes 250 
data layers, including such things as land cover type, slope, water bodies, watersheds, 
essential habitats, earthquake intensities, existing transmission lines, substations, rail and 
roadways, just to name a few. This work used a 1000x1000 raster subset of the EZS data, 
with a 250 square meter cell size. The region analyzed was in the Kentucky Lake region 
where the Tennessee River and the Cumberland River intersect the Ohio River; and 
includes portions of Tennessee, Kentucky, Illinois, and Missouri. 

The case study involved the slope and land cover type layers for the two objectives, as 
these roughly correspond to the competing objectives of cost vs. environmental impact 
respectively. Slope values were in percent slope, and land cover was already categorized 
according to the National Land Cover Database 2006 (Fry et al. 2011). These values and 
categories were converted to cell costs according to the terrain cost multipliers 
recommended by the Western Electricity Coordinating Council (Mason et al. 2012). 
Figure 6 displays graphics of the EISPC data maps used in the analysis, represented as 
1000x1000 rasters and classified with high costs in dark colors and low costs in light 
colors. The left map represents the environmental impact objective, and the right map 
represents the construction cost objective. 
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Figure 6. EISPC maps classified into two objectives: environmental impact (left), and construction 
cost (right) 

From the raster layers, networks were created according to the guidelines of Huber and 
Church (1985), whereby nearby raster nodes were connected with arcs, and the arc cost 
labels for each objective assigned as a function of the node costs and the geometry of the 
arc itself. Three network versions were generated from the raster, with r radius values of 
0, 1, and 2 respectively. The r = 0 network corresponds to an orthogonal grid, r = 1 adds 
diagonal “queen’s moves”, and r = 2 adds to that “rook’s moves”. Each higher value r-
network decreases the inherent geometric distortion of routes at the expense of adding 
more arcs and thus increasing computation time. Higher order networks are possible, but 
the increase in computational effort is not justified due to diminishing returns in spatial 
accuracy. According to Huber and Church, “the second order system (r = 2) appears to 
provide the most satisfactory trade-off between accuracy and computational burden.” 

Experiments were run on the 1000x1000 network on four origin/destination (OD) pairs: 
OD1 was from the SW corner to the NE corner, and OD2 was from the NW corner to the 
SE corner. The other OD pairs that were tested used starting and ending points closer to 
one another. Table 1 lists the networks used, and their properties including the 
coordinates of the OD nodes, r-value, number of nodes and arcs, and the number of 
supported noninferior solutions for that problem. Cells of the raster are referenced by the 
rows and columns, with the top-left corner cell being referenced as (0, 0). Row numbers 
increase as one heads south, and column numbers increase as one goes heading east. 
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Table 1. EISPC Test Networks Properties 

OD 
Name 

Origin 
Node 

Destination 
Node r Total 

Nodes Total Arcs 
Supported 

Noninferior 
Solutions 

1 (999, 0) (0, 999) 0 1,000,000 3,996,000 86 

   1 1,000,000 7,988,004 138 

   2 1,000,000 15,964,020 266 
2 (0, 0) (999, 999) 0 1,000,000 3,996,000 89 

   1 1,000,000 7,988,004 153 

   2 1,000,000 15,964,020 274 

3 (699, 
300) 

(300, 699) 0 1,000,000 3,996,000 32 

   1 1,000,000 7,988,004 69 

   2 1,000,000 15,964,020 114 

4 (599, 
400) 

(400, 599) 0 1,000,000 3,996,000 23 

   1 1,000,000 7,988,004 39 

   2 1,000,000 15,964,020 69 
 

B. Experimental Procedures 
In order to test the efficacy of the pNISE approach, simulations were run on different 
hardware running Java version 7u51. One of the greatest strengths of fork/join and Java 
in general is that it is cross-platform and automatically scalable, thus no modifications are 
necessary in order to run the code on different hardware. The first experiment compared 
the speedup of the pNISE versus an equivalent serial NISE implementation on a quad-
core laptop running Apple OS X v10.9.2. The second experiment was a scaling 
experiment, evaluating the speedup and efficiency of pNISE based on the different 
numbers of allocated processors on a 32 core HP server running Red Hat Enterprise 
Linux Server release 6.2. 

Metrics used to measure performenace included the speedup Sp and parallel efficiency Ep. 
Letting p be the number of processors, and Tp be the execution time of a parallel 
algorithm on p processors, then T1 is the execution time for the serial (1-processor) 
version of the algorithm, and in the ideal scenario, Sp = p and Ep = 1, although this rarely 
occurs in parallel computation applications except for trivially simple cases such as 
Monte-Carlo simulation. In addition to high speedup values, one also looks for a linear 
trend as the number of processors increases. This would indicate that a method is scalable 
to a very high number of processors while maintaining a good speedup. As with perfect 
speedup, linear speedup trends are typically not possible to maintain except in the case 
for very simple problems, since speedup is limited by the amount of parallelism that 
exists in a problem instance or program (Amdahl 1967). In the case of pNISE, the two 
initial base cases must be completed before commencing the recursive portion of the 
algorithm. While the base cases can compute in parallel, the maximum speedup is only 2 
for that portion of the calculation, since only two threads exist. Even after the recursive 
portion begins, the task division progresses as a binary tree (Figure 5), starting with a 
single level of parallelism, followed by two, then four, and so on. For smaller problems, 
this time with less parallelism can take a significant amount of the total computation 
time, so less speedup will be expected. On the other hand, larger problems use a smaller 
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proportion of their total computation time in these inefficient phases, and thus would 
have a higher expected speedup. 

C. Computational Results 

1. Serial NISE vs. pNISE 
The first experiment tested the serial implementation of NISE to the parallel pNise. The 
hardware used was an Apple computer with a 3.7 GHz Intel Core i7-3820QM quad-core 
processor and 16GB of RAM. Results from this analysis are summarized in  

Table 2, comparing runtimes between a serial implementation of NISE using no 
concurrency, versus the fork/join pNISE approach. The results show that pNISE was able 
to maintain a high speedup in all cases, particularly for the largest problems (OD1 an 
OD2), which contain the most supported solutions. All OD1 and OD2 problems 
maintained speedup results between 3.32 and 3.56, with good mid-80% efficiencies. The 
smaller problems had a lower expected speedup due to a greater proportion of their total 
computation time being performed during the inefficient phases of the algorithm. This 
was evident with the OD3 problems having speedups of around 3.0 with mid-70% 
parallel efficiencies, and the smallest OD4 problems having 2.0-2.57 speedups and 
parallel efficiencies dropping to the 50%-65% range. In general, the larger the problem in 
terms of computation time and number of solutions, then the more efficient the 
parallelization. 

Table 2. Serial NISE vs pNISE Runtimes and Speedup 

OD r Supported Solns. NISE T1 (seconds) pNISE T4 (seconds) S4 E4  
1 0 86 117.490 34.394 3.416 0.854 

 1 138 281.087 84.497 3.327 0.832 

 2 266 950.571 267.178 3.558 0.889 
2 0 89 117.319 35.245 3.329 0.832 

 1 153 305.369 87.930 3.473 0.868 

 2 274 981.298 281.162 3.490 0.873 
3 0 32 29.748 10.019 2.969 0.742 

 1 69 100.906 35.481 2.844 0.711 

 2 114 285.074 95.004 3.001 0.750 
4 0 23 10.484 4.075 2.573 0.643 

 1 39 27.545 13.705 2.010 0.502 

 2 69 87.031 36.333 2.395 0.599 
 

2. pNISE Scaling 
This experiment evaluated how the efficiency of the pNISE approach scales as the 
number of processors available is increased. ForkJoinPool(p) can take an optional input 
integer argument p that limits the executor service to that specified level of parallelism. 
All tests were run on a set of HP ProLiant DL580 Gen8 Server nodes, each with 512GB 
of RAM and four 2.0 GHz Intel Xeon X7550 8 core processors for a total of 32 cores per 
node. Results of this analysis are listed in Table 3. Only OD1 and OD2 were evaluated, 
as the other problems were too small to be able to fully make use of the large number of 
processors. Each of the cores on the nodes was approximately half as fast as a core on the 
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Apple computer, but higher speedups were achieved since there were eight times as many 
cores per machine. 

Table 3. pNISE Scaling on 32 core server nodes 

OD1 node 92   OD1 node 93   OD1 node 94 
p Tp (seconds) Sp Ep   p Tp (seconds) Sp Ep   p Tp (seconds) Sp Ep 
1 1896.593 1.00 1.00 

 
1 1866.592 1.00 1.00 

 
1 1816.335 1.00 1.00 

2 974.751 1.95 0.97 
 

2 945.792 1.97 0.99 
 

2 956.488 1.90 0.95 
4 512.794 3.70 0.92 

 
4 522.349 3.57 0.89 

 
4 508.790 3.57 0.89 

8 297.818 6.37 0.80 
 

8 286.318 6.52 0.81 
 

8 281.113 6.46 0.81 
16 195.762 9.69 0.61 

 
16 190.039 9.82 0.61 

 
16 199.161 9.12 0.57 

32 148.945 12.73 0.40   32 138.434 13.48 0.42   32 143.380 12.67 0.40 
                            

     
OD2 node 92   OD2 node 93   OD2 node 94 

p Tp (seconds) Sp Ep   p Tp (seconds) Sp Ep   p Tp (seconds) Sp Ep 
1 2007.119 1.00 1.00 

 
1 1999.339 1.00 1.00 

 
1 1949.368 1.00 1.00 

2 1029.290 1.95 0.98 
 

2 1021.425 1.96 0.98 
 

2 1019.560 1.91 0.96 
4 552.009 3.64 0.91 

 
4 520.650 3.84 0.96 

 
4 517.533 3.77 0.94 

8 316.857 6.33 0.79 
 

8 304.344 6.57 0.82 
 

8 295.011 6.61 0.83 
16 200.411 10.02 0.63 

 
16 201.775 9.91 0.62 

 
16 198.758 9.81 0.61 

32 150.484 13.34 0.42   32 146.503 13.65 0.43   32 147.584 13.21 0.41 
 

In general, speedups increased but the parallel efficiency decreased as the number of 
processors used was increased. The reasons for the drop in efficiency as more cores are 
used is due to a combination of the program running a longer time with less parallelism 
than processors, as well as the effects of increased overhead in coordinating the larger 
executor pool. Even so, the parallelization achieved speedups of up to 13.65, significantly 
reducing the overall computation time for these large problems. The speedup 
performance and deviation from the theoretically ideal efficiency are evident in Figure 7, 
which is a plot of speedup vs. processors used. It should be noted that a problem 
involving additional objectives or larger number of supported points will likely result in 
higher speedups due to their larger problem size. Overall, the results reported here 
demonstrate the value and ease of parallelizing the NISE algorithm. 
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Figure 7. Scaling  analysis of the speedup on 32 core nodes for OD1 (top) and OD2 (bottom) 
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VI. Improvements to pNISE Efficiency 

A. Parallelism Analysis of Basic pNISE 

The previous section detailed a method for using Java’s Fork/Join concurrency to 
parallelize the search for supported solutions to a biobjective shortest path problem. 
While effective at producing 13x speedups on a 32 core processor machine, there is still 
room for improvement toward achieving a theoretically ideal 32x speedup. One issue is 
that the initial computation of the pNISE approach, where the weightings are 0 and 1, has 
only a level of parallelism of 2. When the solutions of these two are used to solve the 
next supported point, that has a parallelism of 1. Then next step then splits into two 
problems, with a parallelism of 2. Then 4, then 8, then 16, etc. After a few iterations, 
eventually there is more parallelism than there are processors and the method uses all 
resources efficiently from then on. But up until that point, some processors are waiting 
idly until enough parallelism exists to use all of the computational resources. 

 

Figure 8. Parallel threads at each stage of pNISE 

Figure 8 displays the parallelism at each stage in a graphical manner, showing the 
number of independent threads (i.e. the level of parallelism), Ti, at each stage i of the 
algorithm. pNise solves the weighted sum objective initially for 0 and 1 weights using 
two independent parallel threads. It then uses those solutions to determine the next 
weight, and solves a single problem. That solution is then used in conjunction with the 
two initial solutions to determine two more weights, and solve those. This process 
continues in a binary tree manner until all branches fathom with no further supported 
solutions to be found. Assuming no early fathoming, each stage n after the initial has a 
level of parallelism of Tn = 2n-1. This means that for a 32 core computer, six stages of the 

0.0# 0.1# T0#=#2#

T1#=#1#

T2#=#2#

T3#=#4#

Tn#=#2n)1#

…
#

1#

1.1# 1.2#

1.1.1# 1.1.2# 1.2.1# 1.2.2#



 

24 

algorithm must be completed (including the initial zero stage) before there are enough 
threads in the thread pool to use all of the processors. 

B. Improving Initial Parallelism 
An improvement to the use of resources during the initial stages, rather than initially just 
solving the weighted objective for only values of 0 and 1, is to perform additional solver 
iterations on unused processors with weights in-between 0 and 1. This is done using 
simple threaded-parallelism, rather than a structured Fork/Join scheme. Essentially, given 
p processors, for each processor i = 1…p, execute the weighted sum objective for weight 
value of zi = (i-1) / (p-1)  (i.e. equal intervals between 0 and 1). For a shortest path 
problem, these solutions take approximately the same amount of time to execute, and 
thus they all complete at approximately the same time. Once complete, a supported 
solution will have been found for each weighted graph, some of which may be repeated 
solutions, depending on the size of the problem and the number of processors. If there are 
no repeated solutions, then the p solutions can be used to initiate p-1 fork/join instances, 
which all get managed by the single Java thread pool in order to efficiently allocate work. 
From this point on, the procedure completes itself the same way as the original pNISE, in 
that a number of fork/join problems are solved in parallel, but the threads from all 
centrally handled by the Java threadpool.  

 

Figure 9. Parallel threads at each stage of the enhanced pNISE, 
making use of unused processors in the initial stages 

Figure 9 displays this enhanced parallelism graphically. In the best-case scenario, the 
method uses all processors in the initial stage, all but one in the next stage, and all 
processors again for subsequent stages until computation is complete. This is in contrast 
with the original approach using 2 in the initial, then 1, then 2, then 4, then 8, etc. If there 
are repeated solutions in the initial stage, then there will be fewer than p-1 fork/join 
subproblems; but our experiments on the EISPC network never had fewer than 17 
independent solutions in the initial stage, which means than in all cases all processors 
were always used by two stages later. 

T0"="p#

T1"≤"p&1"

T2"≤"2(p&1)"

Tn"≤"2n&1(p&1)"

…
"

…"0.1" 0.p#0.2" 0.3" 0.4" 0.p&1"

1" 2" 3" p&1"

1.1" 2.1" 3.1" p&1.1"1.2" 2.2" 3.2" p&1.2"

…"

…"



 

25 

C. Computational Results 
The same experiments were performed with the enhanced pNISE method, and compared 
with the simple pNISE approach. Table 4 shows the results of these computations for the 
two most-distant OD pairs: OD1 from the bottom-left corner to the top-right corner of the 
map, and OD2 from the top-left corner to the bottom-right corner on the map (see Figure 
6). All computations were done on the number 92 node at UCSB’s CSC for hardware 
consistency. On the left side of the table are computations using the simple pNISE, and 
on the right are using the enhanced pNISE. As the number of processors increase, the 
overall speedup and efficiencies improve, in the case of the 32 core experiment going 
from a speedup of 12.73 to a speedup of 15.32 for OD1, and going from a speedup of 
13.24 to a speedup of 15.31 for OD2. 

Table 4. Comparison of simple pNISE and enhanced pNISE on 32 core server nodes 

Simple pNISE – OD1 node 92   Enhanced pNISE – OD1 node 92 
p Tp (seconds) Sp Ep   p Tp (seconds) Sp Ep 
1 1896.593 1.00 1.00 

 
1 1894.384 1.00 1.00 

2 974.751 1.95 0.97 
 

2 963.231 1.97 0.98 
4 512.794 3.70 0.92 

 
4 492.764 3.84 0.96 

8 297.818 6.37 0.80 
 

8 286.472 6.61 0.83 
16 195.762 9.69 0.61 

 
16 173.640 10.91 0.68 

32 148.945 12.73 0.40   32 123.663 15.32 0.48 

                  Simple pNISE – OD2 node 92   Simple pNISE – OD2 node 92 
p Tp (seconds) Sp Ep   p Tp (seconds) Sp Ep 
1 2007.119 1.00 1.00 

 
1 2004.572 1.00 1.00 

2 1029.290 1.95 0.98 
 

2 1007.387 1.99 0.99 
4 552.009 3.64 0.91 

 
4 519.601 3.86 0.96 

8 316.857 6.33 0.79 
 

8 282.882 7.09 0.89 
16 200.411 10.02 0.63 

 
16 177.483 11.29 0.71 

32 150.484 13.34 0.42   32 130.963 15.31 0.48 
 

These improvements are also evident when comparing the speedups graphically as 
depicted in Figure 10, where the benefits of the enhanced pNISE become more 
pronounced as the number of processors increase. 
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Figure 10. Speedup comparison between Simple pNISE and Enhanced pNISE for OD1 (top) and 
OD2 (bottom) 
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VII. Concluding Remarks 

This work developed a “simple-to-program” parallel implementation of the NISE method 
for computing the supported non-dominated solutions to biobjective network 
optimization problems, called pNISE. This method uses high-level fork/join framework 
within the Java 7 concurrency API to make this method parallel without the difficult 
complexities of traditional low-level message-passing parallel languages. After 
describing how to develop this algorithm, a transmission line corridor location case study 
using a large real-world data set demonstrated that the pNISE was effective at taking 
advantage of modern multi-core computer processors to significantly reduce the 
computation time of the biobjective supported solution set. Additional enhancements to 
the pNISE approach were then described, which further improved the parallel 
performance of the method. 

The pNISE approach is applicable to all network problems where there exist fast, 
specialized optimal solution algorithms. In addition to the biobjective shortest path 
problem evaluated in this paper (Raith and Ehrgott 2009, Medrano and Church 2014), 
other problems that could be solved with pNISE include biobjective variants of the 
minimum spanning tree problem (Steiner and Radzik 2008), classical transportation 
problem (Aneja and Nair 1979), assignment problem (Przybylski et al. 2008), maximum 
flow problem (Royset and Wood 2007), and minimum-cost flow problem (Hamacher et 
al. 2007), just to name a few. With the continuing expansion of big data, scientists and 
engineers must tackle larger network problems than ever before, requiring novel tools to 
enable multicriteria analysis and optimization on these massive data sets using modern 
computing resources. Using simple general-purpose parallel tools such as pNISE to speed 
up computation allows a designer to focus less time and energy on the generation of 
alternative solutions, and more time on model development and analysis to provide the 
best solutions to these challenging problems.  
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