
An Exact Biobjective Shortest Path Method
with Gateway Heuristic and Supported Point

Upper-Bounds
F. Antonio Medrano and Richard L. Church

Project 301CR, GeoTrans Report 2013-06-01
June 2013

Photos courtesy of DOE/NREL

University of California, Santa Barbara
Department of Geography

1832 Ellison Hall
Santa Barbara, CA 93106
medrano@geog.ucsb.edu

church@geog.ucsb.edu

1

An Exact Biobjective Shortest Path Method with
Gateway Heuristic and Supported Point Upper-

Bounds

F. Antonio Medrano
Richard L. Church

Corridor Location Project
GeoTrans Laboratory

Department of Geography
University of California, Santa Barbara

June 30, 2013

This report has been developed as a part of the corridor location research project at the
University of California, Santa Barbara. The goal of this project is to take a fresh look at
the process of corridor location, and develop a set of algorithms that compute path
alternatives using a foundation of solid geographical theory in order to offer designers
better tools for developing quality alternatives that consider the entire spectrum of viable
solutions. And just as importantly, as data sets become increasingly massive and present
challenging computational elements, it is important that algorithms be efficient and able
to take advantage of parallel computing resources. Please cite this report as: Medrano,
FA, and RL Church (2013) “An Exact Biobjective Shortest Path Method with Gateway
Heuristic and Supported Point Upper-Bounds” (Report #06-13-01), GeoTrans
Laboratory, UCSB, Santa Barbara CA.

2

I. Introduction

Heuristic approaches are often implemented to define lower and/or upper bounds to the
optimal solutions of difficult-to-solve problems (Danna et al. 2005, Hewitt et al. 2010).
These bounds then restrict the solution space over which a solver computes, and can
often speed up the search for the exact optimal solution. In Medrano and Church (2014),
we introduced a fast heuristic that approximates the Pareto frontier of a biobjective
shortest path problem. This approach was shown to efficiently calculate a set of paths that
closely approximate the exact Pareto optimal set when evaluated in objective space. This
approximation approach represents an excellent method to generate a candidate set from
which to select viable alternatives, particularly in a real-world design scenario where
there exists inherent uncertainly in the spatial data, and where data sets are large and
present formidable computation issues. It is logical to ask the question of whether this
approximation approach could be harnessed to speed up the computation of an exact
Pareto optimal solution set to a biobjective shortest path problem. This report introduces
a new exact algorithm for solving a biobjective shortest path problem based on an
enumerative approach first introduced by Raith and Ehrgott (2009), but using the
approximation heuristic as an improved upper bound to speed up overall computation
times. In addition, valid bounds are introduced to avoid enumerating solutions already
dominated by supported solutions. This further limits the enumeration search region in
hopes of improving the performance of enumerative schemes.

Specialized exact algorithms for the biobjective shortest path problem fall under two
categories: labeling approaches and enumeration approaches. Raith and Ehrgott (2009)
reviewed the state-of-the-art approaches of the time, and introduced two-phase variants of
a label-setting algorithm by Guerriero and Musmanno (2001) and a label-correcting
approach by Skriver and Andersen (2000). They also introduced a new two-phase
enumerative technique called 2NSP that used the Near Shortest Path (NSP) enumeration
algorithm developed by Carlyle and Wood (2005). They then evaluated the performance
of those methods on three types of networks: 1) regular grid networks with random
discrete uniform distribution costs, 2) random networks generated by the NetMaker
network generation technique described by Skriver and Andersen (2000), and 3) road
networks acquired from the Tiger Road Networks for the 9th DIMACS implementation
challenge, which were originally sourced from U.S. Census data. After developing our
improvements to 2NSP, we replicated the experiments on these same networks with one
exception in order to compare the performance of the new approach to the existing
published methods. In lieu of the random-cost grid networks, we chose to test on spatial
terrain-based networks of the kind that would be used in a transmission corridor location.

3

II. Near Shortest Path (NSP) Biobjective Shortest Path (BSP) Algorithm

Raith and Ehrgott (2009) introduced a two-phase enumerative biobjective shortest path
(BSP) algorithm based upon the Near Shortest Path (NSP) enumeration technique
developed by Carlyle and Wood (2005). Earlier enumerative BSP algorithms had used k-
shortest path subroutines (Coutinho-Rodrigues et al. 1999), but Carlyle and Wood
showed in their paper that NSP was a much faster approach to path enumeration due to
not being restricted to find the paths in ascending path-length order. The NSP algorithm
searches for all paths that are within some threshold D = (1 + ε) × Lsp, where D is the
maximum length path to be returned, ε is a positive real number, and Lsp is the length of
the shortest path. For example, if ε = 0.05, then the NSP will output all paths that are
within 5% of the length of the shortest path.

The Raith and Ehrgott NSP-BSP algorithm is a two-phase method, which is denoted here
as 2NSP1. In the first phase, the supported solutions are found by solving weighted
composite single-objective shortest path problems (Cohon et al. 1979). The remaining
solutions are found in the Boundary of Unsupported Solution Search (BUSS) regions,
sometimes referred to in the literature as the duality gap. These BUSS regions initially
are defined only by the supported solutions, and consist of triangular areas between
supported non-dominated (Pareto) solutions where unsupported non-dominated solutions
may exist.

Figure 1. Initial BUSS regions between the supported non-dominated solutions

1 Raith and Ehrgott call it NSPD, where the D means it uses Dijkstra’s algorithm for phase-1

high

high

low

low

z1

z2

Supported Non-
Dominated Solution

BUSS Region

4

The second phase searches for the unsupported non-dominated solutions within each
individual BUSS region. For each BUSS region, the composite weighting for the graph is
set so that the two supported solutions that define the specific BUSS region have equal
composite objective value (points A and B in Figure 2). This defines a projection axis
from which composite objective values are measured in a direction perpendicular from
this projection line. Two solutions with different component but equal composite
objective values for the given weight will lie on a line parallel to the projection axis.

Figure 2. Setting the initial threshold for a 2NSP BUSS region. BUSS region is a subset of the NSP
search region.

Recall that the NSP method enumerates all solutions within a threshold D = (1 + ε) × Lsp.
If we define d = ε × Lsp, where d represents the amount of length greater than the shortest
path length to reach the total threshold D, then this can be rewritten as D = Lsp + d. The
2NSP algorithm evaluates each BUSS region independently, and defines the initial
threshold D0 = Lsp + d0, where d0 is the perpendicular distance from the projection line to
the most distant nadir point of the BUSS region (see Figure 2). This nadir point is
initially located at the right-angle vertex of the BUSS right triangle. In objective space,
this threshold is a line parallel to the projection axis that intersects the nadir point, and
defines a search region that is an infinite strip between the projection line and the
threshold line, and contains the entire BUSS region. Despite an infinite search area,
feasible solutions will only exist in a bounded polygon sub-region due to the convexity of
the supported solutions, which represent a lower bound on the feasible solution set.

The 2NSP method begins by enumerating paths with a composite objective zc < D0. Many
of the output paths may fall outside of the BUSS region, but a path found that has z1 and

high

high

low

low

z1

z2

A

B

Supported Non-
Dominated Solution

BUSS Region

Nadir point

NSP search region

Projection line

Threshold Line

5

z2 objective values that place it inside the BUSS region will in-turn dominate some
portion of that region, at which point the shape of the BUSS must be updated to reflect
this. If the dominated region includes the nadir point that limited the value of threshold
D, then the threshold is updated, further restricting the area to be searched and reducing
computation to completion. This new threshold Dnew = Lsp + dnew is set to the most distant
nadir point of the updated BUSS region, as referenced from the projection line (see
Figure 3).

Figure 3. Updating the 2NSP threshold as solutions reduce the area of a BUSS region

Each new solution that falls into the updated BUSS region dominates some portion of the
region, requiring an update to the set nadir points. A new solution may also dominate one
or more of the previously found solutions, thus the program must check for this and
remove any dominated solutions from the Pareto set. The NSP algorithm runs until all
paths within the threshold have been enumerated, at which point all unsupported non-
dominated solutions between the two supported solutions used to define the BUSS region
have been found. The 2NSP method is then repeated for each adjacent pair of supported
solutions until all BUSS regions have been analyzed and the entire Pareto set has been
found.

high

high

low

low

z1

z2

A

B

Supported Non-
Dominated Solution

Nadir point

Projection line

New Threshold Line

Old Threshold Line

Unsupported Non-
Dominated Solution

BUSS Region

NSP search region

6

III. Improvements to the NSP BSP Algorithm

A. Gateway Heuristic Upper Bound

In Medrano and Church (2014), a new heuristic method was developed that was capable
of efficiently computing an effective approximation of the unsupported Pareto solution
set to a biobjective shortest path problem. Since this method offers excellent solution sets
with little computational effort, it is proposed here to use it as an initial solution upper-
bound for the biobjective NSP approach. Thus, it begins with heuristically solving for an
approximation of the non-dominated points using either the biobjective gateway node
(GWN) or gateway arc (GWA) heuristic. Doing so requires twice as many shortest path
solver iterations for the supported points as the standard 2NSP algorithm. The heuristic
solutions are then added to the candidate Pareto solution set and the NSP threshold D is
updated according to the same rules as discussed in the prior page and in Figure 3. NSP
path enumeration (or any combinatorial path enumeration for that matter) has a tendency
to grow exponentially as the threshold value increases, thus a more tightly restricted
threshold value will result in significant reductions in overall computational effort. Two
versions of the 2NSP algorithm with an initial gateway upper bound were implemented:
one using gateway node candidate paths (called GWN2NSP), and another using gateway
arc candidate paths (called GWA2NSP). Gateway node paths generate n path candidates
for each weighting, where n is the number of nodes in the network. Gateway arcs
generate m path candidates for each weighting, where m is the number of arcs in the
network. As path candidates are generated they are added to a lexicographically sorted
list of non-dominated path candidates. When a new candidate is added to the list there
must also be a check to see if the new candidate dominates any existing candidates in the
list. Overall, this adds some to the computational overhead, first in doubling the number
of shortest path solver iterations during the first phase of the algorithm (the NISE
supported solution phase) in order to generate the gateway paths, and also with a binary
search which is needed to identify if a path is non-dominated, and if so then inserting the
path into the list and removing any paths dominated by the newly inserted path. If the
enumerative second phase of NSP-based algorithm takes an exceptional amount of time
to compute, then the tighter NSP bounds generated by the presence of an initial
approximate non-dominated path set from the gateway heuristic has the potential to
significantly reduce overall computation times.

B. Supported Solution Dominance Bounds

The single objective Carlyle and Wood (2005) NSP algorithm uses depth-first-search
(DFS) to find all paths with length below a given threshold, D. The DFS uses a first-in
last-out stack data structure to build paths by adding arcs to the stack so long as they
could result in a path that meets that threshold criterion. A naïve approach would add arcs
to the stack so long as the total path length is less than D, and not add an arc if adding it
would cause the path length to exceed D. The original NSP algorithm developed by
Byers and Waterman (1984) added an elegant innovation to this idea by using
information from an initial reverse shortest path tree in order to improve the efficiency of
the enumeration. As an example, suppose one is enumerating near shortest paths from S
to T. NSP uses a stack data structure to contain arcs that make up a path P from node S to

7

node x, with length L(x). An arc (x,y) from node x to node y will have a cost c(x,y), and
the shortest path from a node x to the destination node T (as computed initially by the
reverse shortest path tree) has cost d’(x). Let us consider a node u ≠ T. Some path P of
length L(u) led us from node S to node u having a path length ≤ D. Let us now consider
adding arc (u,v) to the path P. The arc is added to the path if the following is true.

L(u) + c(u,v) + !d (v) < D (1)

This means that arc (u, v) is added only if the sum of the existing path length to u, plus
the cost of the arc from u to v, plus the shortest possible path length from v to the
destination, is less than the threshold D. Using the d’(v) information allows the algorithm
to know if there does not exist any feasible possibility of reaching the destination without
exceeding the limit D. If so, it is no longer necessary then to search that portion of the
graph. This approach may be considered similar to the approximation of the shortest path
length from a candidate node to the destination used in the A* algorithm developed by
Hart et al. (1968).

The biobjective variant of the algorithm, 2NSP, is the same except it uses a composite
weighted single objective function zc that is a function of the individual competing
objectives z1 and z2, weighted by α, where zc = α × z1 + (1 - α) × z2, and α is determined
by the slope of the supported points that define the particular BUSS region being
analyzed. The 2NSP method for the bi-objective case at each iteration checks if the
composite function meets the threshold criterion.

Lc (u) + cc (u,v) + !dc (v) < Dc (2)

This results in paths enumerated that all fall within the given BUSS region used to define
the composite weighting. But this boundary also encompasses areas outside of the BUSS
region, resulting in numerous paths enumerated that are dominated by the previously
found supported non-dominated solutions (see Figure 4).

8

Figure 4. Paths enumerated by 2NSP, both inside and outside the BUSS region

The paths found that are outside of the BUSS region constitute wasted computational
effort, as they are always dominated by a supported solution. Our tests on various raster
networks have shown that a minimum of 75%, and as many as 99.88% of the paths
enumerated by 2NSP were located in objective space outside of the BUSS regions.

Given this, it is logical to add a check that eliminates these paths from being found, by
not only testing if a proposed arc added to the stack would exceed the threshold Dc, but
also if it would result in a path dominated by either of the supported points. This requires
storing two additional labels during the initial NISE supported solution computation.
Initially, biobjective NISE solves for α weightings of 0 and 1, corresponding to
independent single-objective solutions that ignore the existence of other objectives.
Storing the reverse shortest path tree distance for these weightings for each node gives
labels for the best possible future outcome with respect to each independent objective.
We call these labels d’1(v) and d’2(v) for the z1 and z2 objectives, respectively. Then, at
the point where 2NSP queries an arc to determine if it should be added to the stack
(equation 15), we add the following additional queries, where A and B are the supported
points of the BUSS region.

L1(u) + c1(u,v) + !d1(v) < z1(B) (3)

L2 (u) + c2 (u,v) + !d2 (v) < z2 (A) (4)

This puts additional bounds on the NSP computation, dramatically reducing the size of
the NSP search region to only that of the BUSS region (see Figure 5), and reducing the
total number of paths enumerated. We denote this bounded algorithm as B2NSP.

high

high

low

low

z1

z2

A

B

Supported Non-
Dominated Solution

BUSS Region

Nadir Point

NSP Search Region

Projection Line

Threshold Line

Enumerated Paths

9

Figure 5. B2NSP supported solution bounds restricting enumerated
paths to only within the initial BUSS region

C. Combining Both Improvements

The two improvement approaches described above are not mutually exclusive, and can be
combined to further improve the efficiency of the enumerative method. We added the
combined algorithms to our experiments, and denote the supported bounds gateway node
variant as BGWN2NSP, and the supported bounds gateway arc variant as BGWA2NSP.

high

high

low

low

z1

z2

A

B

Supported Non-
Dominated Solution

BUSS Region

Nadir Point

Projection Line

Threshold Line

Enumerated Paths

z2(A) upper bound

z1 (B) upper bound

10

IV. Numerical Experiments

A. Data Sets

Similar to Raith and Ehrgott (2009), the algorithms were tested on three types of
networks: grid, random, and road networks. The random and road networks were the
same as those used by Raith and Ehrgott, while we have changed the grid networks to be
terrain-based GIS raster networks representative of the type that would be used for a
transmission line corridor location application. Details on each network type are
described below.

1. Raster Networks
The first type of network Raith and Ehrgott (2009) used to test their biobjective shortest
path algorithms were orthogonal grid networks with random integer arc costs. Because
the main focus of this research is on corridor location, it was decided to test the bi-
objective shortest path approach on spatial terrain-based networks of the kind that would
be used in a transmission location problem. While terrain networks are similar to grid
networks in that they contain a regular connectivity pattern, they can be made more dense
when they incorporate queen’s move connectivity and/or knight’s move connectivity
between nodes (Goodchild 1977). Such connectivity also requires the use of non-integer
arc costs to account for the geometry, thus the programs we implemented use floating
point arithmetic rather than integer math.

The particular terrain networks used were 1) a 20x20 manually fabricated raster, 2) an
80x80 subset of the Maryland Automated Geographic Information (MAGI) system
database, and 3) a 100x160 subset of the same MAGI database. The first two networks
originally included just a single objective cost layer, so a second objective node cost, z2 ,
was randomly generated and scaled to match z1 ranges. The 100x160 network contains
two cost layers, with z1 pertaining to an economic cost layer, and z2 pertaining to an
environmental impact layer.

Each raster was used to define networks of three r-radius types: 1) an orthogonal (r = 0)
network, 2) a “queen’s move” (r = 1) orthogonal and diagonal network, and 3) a “queen’s
plus knight’s move” (r = 2) network. Table 1 contains pertinent statistics of these
networks, including size, origin-destination node locations, r radius value, number of
supported Pareto (non-dominated) solutions, and the total number of Pareto solutions.

11

Table 1. Raster Test Networks

Name Dimensions
and OD r Nodes Arcs

Supported
Pareto

Solutions

All Pareto
Solutions

R1 20x20 0 400 1,520 10 28
R2 SW to NE 1 400 2,964 11 49
R3 2 400 5,700 16 103
R4 80x80 0 6,400 25,280 29 120
R5 SW to NE 1 6,400 50,244 36 371
R6 2 6,400 99,540 57 1339
R7 100x160 0 16,000 63,480 11 22
R8 SW to NE 1 16,000 126,444 19 199
R9 2 16,000 251,340 35 718

R10 100x160 0 16,000 63,480 9 20
R11 NW to SE 1 16,000 126,444 17 109
R12 2 16,000 251,340 44 495

2. Random NetMaker Networks
When Skriver and Andersen (2000) published their label correcting biobjective shortest
path algorithm, they tested their approach on random networks. Originally they had tested
their algorithm on NETGEN networks in order to replicate earlier work by Huarng et al.
(1996), but they found that the simple structure of the NETGEN networks resulted in data
sets with very few non-dominated paths. They then developed a new random network
generator that they called NetMaker that used random Hamiltonian cycles to generate
random networks with more non-dominated paths. They felt that this structure would
better approximate real life problems, although it is unclear why then they did not simply
try using real world data. The two objective costs for NetMaker networks are randomly
assigned integers with approximately half of the arcs having a high cij

1 value and a low

cij
2 value, and the other half of the arcs have a low cij

1 and a high cij
2 . Full details on the

structure and methods used to generate the networks can be found in Skriver and
Andersen (2000).

Raith and Ehrgott (2009) also used the NetMaker networks in order to compare the
different algorithms. They coded their own version of NetMaker using the same rules
developed by Skriver and Anderson, and included additional features to further modify
the network properties. Raith (2010) noted in a later paper that an error in their NetMaker
generator code created networks with shortcuts from the origin to the destination,
resulting in experiments where the computations solved instantaneously no matter what
size of network was used. Their networks had very few non-dominated solutions because
of the shortcut paths dominating all other possible routes. We were able to acquire the
original NetMaker generator program developed by Skriver and Anderson which did not
include this error, and we used that code to generate our own errorless random networks
for use in our computational experiments that are consistent with the previous literature.

The NetMaker generator program allows for certain input parameters when generating
new networks. It first prompts for how many nodes in the network, and creates a random
Hamiltonian cycle with all of the nodes. Then it prompts for parameters defining the
maximum and minimum number of outgoing arcs that should emanate from each node.

12

Finally, the Inode parameter is the node interval, i.e. the maximum allowed range of any
outgoing arc. Essentially, if at node 100, and the Inode = 20, then outgoing arcs can
terminate at any node within the number range 90 to 110. Table 2 lists the NetMaker
networks used in our experiments, their parameters, and their properties. Networks NM1
to NM20 match the parameters of the Raith and Ehrgott experiments, where they tested
on networks of up to 21,000 nodes and approximately 530,000 arcs. This work extends
the experiments to networks up to 15 times larger than the Raith and Ehrgott networks
(NM21 to NM30), the largest with 315,000 nodes and 7,876,183 arcs. Interestingly, the
number of non-dominated solutions did not increase with network size, and seemed to
correlate more with the parameters for minimum and maximum outgoing arcs per node.

Table 2. NetMaker Test Networks

Name Inode
Min

Outgoing
Arcs

Max
Outgoing

Arcs
Nodes Arcs

Supported
Pareto

Solutions

All Pareto
Solutions

NM1 20 5 15 3,000 30,088 11 25
NM2 20 1 20 3,000 31,590 4 9
NM3 50 5 15 3,000 30,046 9 22
NM4 50 1 20 3,000 31,746 8 22
NM5 50 10 40 3,000 74,942 7 31
NM6 20 5 15 7,000 70,057 10 38
NM7 20 1 20 7,000 73,676 5 11
NM8 50 5 15 7,000 69,483 7 10
NM9 50 1 20 7,000 73,162 8 19

NM10 50 10 40 7,000 174,208 15 37
NM11 20 5 15 14,000 139,989 13 41
NM12 20 1 20 14,000 147,288 6 18
NM13 50 5 15 14,000 140,094 8 24
NM14 50 1 20 14,000 145,755 10 33
NM15 50 10 40 14,000 350,600 8 32
NM16 20 5 15 21,000 209,770 13 33
NM17 20 1 20 21,000 223,245 9 39
NM18 50 5 15 21,000 209,575 10 24
NM19 50 1 20 21,000 220,495 10 32
NM20 50 10 40 21,000 526,615 11 38
NM21 20 20 5 28,000 279,658 6 26
NM22 50 50 10 28,000 699,870 14 36
NM23 20 20 5 70,000 700,845 9 28
NM24 50 50 10 70,000 1,747,489 12 43
NM25 20 20 5 100,000 1,002,682 10 42
NM26 50 50 10 100,000 2,500,462 10 47
NM27 20 20 5 210,000 2,101,252 11 38
NM28 50 50 10 210,000 5,247,056 15 40
NM29 20 20 5 315,000 3,147,674 10 30
NM30 50 50 10 315,000 7,876,183 11 43

13

3. Road Networks
The third type of network we used in the experiments reported here were road networks
acquired from the Tiger Road Networks for the 9th DIMACS implementation challenge2.
These networks were originally sourced from U.S. Census TIGER data, but then cleaned
for the competition to contain only road data. The two costs for each arc are the travel
time in seconds, and the travel distance in meters. The travel time was determined by
DIMACS by multiplying the travel distance of an arc by one of four different road
quality factors. One can see that these two objectives are correlated with each other,
rather than competing, so overall the Pareto frontiers have relatively few solutions for a
given network size. Like Raith and Ehrgott (2009), this experiment used the Washington
DC (DC), Rhode Island (RI), and New Jersey (NJ) networks. They did not list which
nodes were used for their origin and destinations, so instead OD pairs were randomly
selected. Table 3 lists the road networks used and their properties. It should be noted that
Raith and Ehgott used versions with an artificially high-cost Hamiltonian cycle added to
the network to ensure connectivity. Instead, the base network without the added cycle
was used, and different OD pairs were selected if a pair turned out to be not connected.

Table 3. Road Test Networks

Name State/ District Nodes Arcs Average Pareto
Solutions

Minimum Pareto
Solutions

Maximum Pareto
Solutions

DC1–11 Washington, DC 9,559 29,818 22.6 3 76
RI1–11 Rhode Island 53,658 138,426 20.2 2 92
NJ1–11 New Jersey 330,386 872,072 82.9 12 221

B. Computational Results

All algorithms were coded in Java 7 using the Processing library (www.processing.org)
for graphical support in visualizing networks and results. The Processing library does
slightly slow down code runtimes, but since it was used for all codes the relative
performance between algorithms is consistent. All computational tests were performed on
an Apple laptop with an Intel Core i7-3820QM, 2.7 GHz quad-core processor, 16GB of
RAM, running OS X 10.9. Whenever the computation exceeded 10 hours, computation
was stopped. Such instances are indicated by a dash in the table of results.

1. Raster Networks
thwhile on this type of network.

Table 4 and Table 5 include the computational runtimes and the total number of paths
enumerated for the labeling and enumeration algorithms on the raster test networks.
Figure 6 displays the runtime results in a graphical chart. The first observation is the
exponential runtime behavior of the enumeration methods on the raster terrain networks
as the networks grew in size. Runtimes for all of the methods were all less than 0.1
seconds on all of the 20x20 networks. On R4-R6, the gateway and supported solution

2 http://www.dis.uniroma1.it/challenge9/data/tiger/

14

upper bounds both made significant improvements over 2NSP, with the best results
coming from combining the two. On R4, the BGWN2NSP and BGWA2NSP methods
sped up computation over 2NSP by greater than 843 times by requiring less than 0.07%
of the number of paths to be enumerated. Tests on R5 showed similar significant
speedup, and experiments on R6 made the problem solvable using BGWA2NSP and
BGWN2NSP in 1.5 hours, while 2NSP and B2NSP were stopped incomplete after 10
hours. Despite the improvements though, all problems failed to solve after 10 hours for
all enumerative methods on R7-R12, while both labeling methods (LCor and 2LCor)
solved these problems in less than a minute. The GWA bounded algorithms typically
performed equal to or better than their corresponding GWN versions, making the
additional overhead of generating a GWA candidate set worthwhile on this type of
network.

Table 4. Algorithm runtimes on raster networks

Note: results indicated with a dash did not solve in the imposed time limit of 10 hours

Table 5. Number of enumerated paths on raster networks

Note: results indicated with a dash did not solve in the imposed time limit of 10 hours

time (sec) time (sec) time (sec) time (sec) time (sec) time (sec) time (sec) time (sec)
R1 0.008 0.018 0.021 0.019 0.024 0.023 0.020 0.022
R2 0.018 0.031 0.028 0.025 0.024 0.027 0.021 0.027
R3 0.066 0.056 0.057 0.044 0.070 0.070 0.046 0.059
R4 0.190 0.430 7870.111 25.453 71.173 71.023 9.280 9.327
R5 1.396 1.490 59.373 35.420 12.033 12.135 7.491 7.534
R6 38.779 22.039 – – 10073.280 9786.610 5706.956 5585.135
R7 0.132 0.388 – – – – – –
R8 3.124 1.891 – – – – – –
R9 50.817 25.323 – – – – – –
R10 0.120 0.358 – – – – – –
R11 0.415 0.941 – – – – – –
R12 3.099 4.867 – – – – – –

paths paths paths paths paths paths paths paths
R1 n/a n/a 2,213 260 814 814 145 145
R2 n/a n/a 2,136 328 469 465 115 114
R3 n/a n/a 11,983 2,816 6,397 5,314 1,754 1,549
R4 n/a n/a 3,569,495,619 4,362,303 27,524,313 27,517,643 2,483,849 2,482,336
R5 n/a n/a 37,788,197 9,418,048 6,694,418 6,694,081 1,792,104 1,792,051
R6 n/a n/a – – 6,287,222,438 6,246,979,125 2,102,200,145 2,098,403,081
R7 n/a n/a – – – – – –
R8 n/a n/a – – – – – –
R9 n/a n/a – – – – – –
R10 n/a n/a – – – – – –
R11 n/a n/a – – – – – –
R12 n/a n/a – – – – – –

BGWA2NSP2NSP B2NSP GWN2NSP GWA2NSP BGWN2NSPLCor 2LCor

B2NSP GWN2NSP GWA2NSP BGWN2NSP BGWA2NSP2LCor 2NSPLCor

time (sec) time (sec) time (sec) time (sec) time (sec) time (sec) time (sec) time (sec)
R1 0.008 0.018 0.021 0.019 0.024 0.023 0.020 0.022
R2 0.018 0.031 0.028 0.025 0.024 0.027 0.021 0.027
R3 0.066 0.056 0.057 0.044 0.070 0.070 0.046 0.059
R4 0.190 0.430 7870.111 25.453 71.173 71.023 9.280 9.327
R5 1.396 1.490 59.373 35.420 12.033 12.135 7.491 7.534
R6 38.779 22.039 – – 10073.280 9786.610 5706.956 5585.135
R7 0.132 0.388 – – – – – –
R8 3.124 1.891 – – – – – –
R9 50.817 25.323 – – – – – –
R10 0.120 0.358 – – – – – –
R11 0.415 0.941 – – – – – –
R12 3.099 4.867 – – – – – –

paths paths paths paths paths paths paths paths
R1 n/a n/a 2,213 260 814 814 145 145
R2 n/a n/a 2,136 328 469 465 115 114
R3 n/a n/a 11,983 2,816 6,397 5,314 1,754 1,549
R4 n/a n/a 3,569,495,619 4,362,303 27,524,313 27,517,643 2,483,849 2,482,336
R5 n/a n/a 37,788,197 9,418,048 6,694,418 6,694,081 1,792,104 1,792,051
R6 n/a n/a – – 6,287,222,438 6,246,979,125 2,102,200,145 2,098,403,081
R7 n/a n/a – – – – – –
R8 n/a n/a – – – – – –
R9 n/a n/a – – – – – –
R10 n/a n/a – – – – – –
R11 n/a n/a – – – – – –
R12 n/a n/a – – – – – –

BGWA2NSP2NSP B2NSP GWN2NSP GWA2NSP BGWN2NSPLCor 2LCor

B2NSP GWN2NSP GWA2NSP BGWN2NSP BGWA2NSP2LCor 2NSPLCor

15

Figure 6. Algorithm runtimes on raster networks

Grid and raster networks were shown to be inherently challenging for enumerative
approaches. The regular arc pattern and relatively small number of distinct values of arc
costs means that as the threshold D increases linearly, the number of path combinations
increase exponentially. This is exemplified by the massive increase in paths enumerated
when comparing the 80x80 enumeration results to the 20x20 results, and looking at the
intractability of the NSP methods on the 100x160 grids. The node labeling methods were
not as encumbered as network sizes increased, since their runtimes depended more on
simply the number of nodes in the network and proved to be much more efficient in these
cases. Overall, for the terrain based raster networks 2LCor appears to be the best
algorithm, with LCor being the second best.

2. Random NetMaker Networks
Table 6 and Table 7 include the computational runtimes and the total number of paths
enumerated for the labeling and enumeration algorithms on the NetMaker test networks.
Figure 7 displays the runtime results in a graphical chart. Earlier we observed that the
number of non-dominated solutions on NetMaker networks depend more on the
generation parameters rather than the size of the network, and the number of paths
enumerated did not seem to vary much by network size. In fact, all of the enumeration
techniques generated very few paths to find the complete Pareto set, so the gateway and
supported solution upper bounds did not yield much improvement to the overall
computation time. The overhead required in the gateway approaches, where the number
of shortest path computations is doubled in order to generate a gateway path set, always
overshadowed the benefits of reduced enumeration effort. Similarly, for 2LCor, the
overhead of computing the supported points first did not yield faster computation times
over LCor on these networks.

0.001$

0.010$

0.100$

1.000$

10.000$

100.000$

1000.000$

10000.000$

R1$ R2$ R3$ R4$ R5$ R6$ R7$ R8$ R9$ R10$ R11$ R12$

Se
co
nd

s(

Raster(Graph(Network(

LCor$

2LCor$

2NSP$

B2NSP$

GWN2NSP$

GWA2NSP$

BGWN2NSP$

BGWA2NSP$

16

Table 6. Algorithm runtimes on NetMaker networks

Figure 7. Algorithm runtimes on NetMaker networks

time (sec) time (sec) time (sec) time (sec) time (sec) time (sec) time (sec) time (sec)
NM1 0.281 0.418 0.149 0.139 0.230 0.251 0.231 0.252
NM2 0.248 0.277 0.050 0.050 0.149 0.150 0.154 0.176
NM3 0.243 0.359 0.129 0.130 0.217 0.233 0.222 0.232
NM4 0.256 0.335 0.100 0.100 0.202 0.226 0.213 0.225
NM5 0.559 0.614 0.184 0.183 0.294 0.347 0.300 0.401
NM6 0.538 0.735 0.268 0.284 0.494 0.618 0.510 0.559
NM7 0.525 0.612 0.139 0.148 0.304 0.340 0.313 0.349
NM8 0.489 0.513 0.068 0.073 0.378 0.422 0.388 0.421
NM9 0.496 0.634 0.222 0.222 0.430 0.547 0.442 0.557
NM10 1.411 1.607 0.550 0.542 1.140 1.374 1.170 1.374
NM11 1.049 1.615 0.737 0.724 1.514 1.676 1.516 1.648
NM12 1.138 1.286 0.268 0.271 0.827 0.892 0.843 0.900
NM13 0.863 1.146 0.488 0.488 1.066 1.150 1.087 1.159
NM14 0.952 1.343 0.563 0.537 1.247 1.360 1.252 1.369
NM15 2.309 2.445 0.660 0.646 1.761 1.937 1.795 1.943
NM16 1.446 2.446 1.254 1.275 2.649 2.826 2.725 2.868
NM17 1.598 2.113 0.865 0.875 1.904 2.091 1.986 2.146
NM18 1.274 1.992 1.069 1.028 2.148 2.228 2.158 2.240
NM19 1.487 1.952 0.939 0.911 2.216 2.414 2.253 2.434
NM20 4.045 4.692 1.575 1.577 4.093 4.519 4.064 4.561
NM21 2.221 2.548 0.828 0.819 1.912 2.083 1.934 2.104
NM22 5.730 7.159 2.953 3.061 8.066 8.853 8.207 8.808
NM23 6.545 8.915 3.569 3.548 12.105 12.900 12.372 12.944
NM24 20.173 27.049 15.825 16.025 32.980 34.841 33.816 34.956
NM25 9.952 20.043 11.344 11.042 27.094 28.302 26.951 28.257
NM26 32.009 45.246 22.671 22.136 52.077 55.031 52.063 55.087
NM27 24.385 66.291 41.079 41.257 125.815 129.540 126.357 129.552
NM28 68.948 197.415 154.987 153.856 352.190 357.076 351.135 357.642
NM29 47.199 107.098 56.539 56.603 186.031 190.220 186.075 190.510
NM30 109.945 343.840 228.322 228.316 548.658 557.424 549.109 556.172

B2NSP GWN2NSP GWA2NSP BGWN2NSP BGWA2NSPLCor 2LCor 2NSP

0.010$

0.100$

1.000$

10.000$

100.000$

1000.000$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$ 11$ 12$ 13$ 14$ 15$ 16$ 17$ 18$ 19$ 20$ 21$ 22$ 23$ 24$ 25$ 26$ 27$ 28$ 29$ 30$

Se
co
nd

s(

NetMaker(Network(

LCor$

2LCor$

2NSP$

B2NSP$

GWN2NSP$

GWA2NSP$

BGWN2NSP$

BGWA2NSP$

17

Table 7. Number of enumerated paths on NetMaker networks

On the NM1 to NM26 networks, the 2NSP and B2NSP algorithms performed equally
well as the best approaches. For the largest four networks, LCor took over as the best
algorithm. Since Netmaker networks do not emulate any sort of real-world network
problem, we did not explore if this trend would continue for even larger networks, or for
different parameters in generating the networks. If an interesting application with this
network structure is found, then it may be beneficial to further explore a wider variety of
parameters and their effects on computation times on the various methods.

3. Road Networks
Table 8 and Table 9 include the computational runtimes and the total number of paths
enumerated for the labeling and enumeration algorithms on the road test networks. Figure
8 displays the runtime results in a graphical chart. For the small DC road network,
B2NSP was the fastest for 8 out of the 11 problems, while 2LCor was fastest for the other
3. All algorithms converged on all problems except for 2NSP, which timed out after 10
hours on one instance. For the medium RI road networks, B2NSP was the fastest for 9
out of the 11 problems, while 2LCor was fastest for the other 2. All enumeration
techniques timed out on RI1; and 2NSP, GWN2NSP, and GWA2NSP timed out on RI2.

paths paths paths paths paths paths paths paths
NM1 n/a n/a 287 53 187 187 44 44
NM2 n/a n/a 68 7 46 45 7 7
NM3 n/a n/a 192 45 151 151 39 39
NM4 n/a n/a 275 54 158 157 46 46
NM5 n/a n/a 1,174 423 520 491 250 247
NM6 n/a n/a 592 98 381 324 72 63
NM7 n/a n/a 140 68 64 47 37 23
NM8 n/a n/a 119 16 88 88 15 15
NM9 n/a n/a 214 48 184 184 45 45
NM10 n/a n/a 545 64 461 410 50 44
NM11 n/a n/a 615 138 380 343 79 76
NM12 n/a n/a 182 52 124 123 33 32
NM13 n/a n/a 165 41 124 124 28 28
NM14 n/a n/a 345 78 145 145 47 47
NM15 n/a n/a 857 314 212 177 110 90
NM16 n/a n/a 443 68 313 272 57 53
NM17 n/a n/a 396 67 178 169 48 48
NM18 n/a n/a 348 77 194 189 39 39
NM19 n/a n/a 232 38 179 179 34 34
NM20 n/a n/a 509 86 265 234 59 54
NM21 n/a n/a 764 201 283 283 92 92
NM22 n/a n/a 1,591 106 958 958 88 88
NM23 n/a n/a 823 85 400 334 60 54
NM24 n/a n/a 1,738 377 729 619 245 216
NM25 n/a n/a 1,476 271 649 617 125 123
NM26 n/a n/a 1,186 287 368 358 122 117
NM27 n/a n/a 457 82 301 277 64 62
NM28 n/a n/a 1464 222 579 556 121 120
NM29 n/a n/a 673 182 228 189 54 45
NM30 n/a n/a 1334 315 313 294 116 105

2NSP B2NSP GWN2NSP GWA2NSP BGWN2NSP BGWA2NSPLCor 2LCor

18

For the largest NJ road networks, 2LCor was fastest for 5 problems, BGWN2NSP was
fastest for 4 problems, and B2NSP was the fastest for 2 problems. On the problems where
2LCor was fastest, almost all of the enumeration techniques failed to converge in less
than 10 hours. From this data we can observe that the NSP improvements, in particular
the supported solution dominance bounds, provided significant gains in speed to the
enumeration techniques, often resulting in the fastest computation times. But instances
where the NSP methods could not solve a problem in a reasonable amount of time
indicate the instability and exponential nature of enumeration for these types of road
networks. On the other hand, labeling techniques were often not the fastest, but they
always solved without fail in less than the cutoff time, with 2LCor always performing
better than LCor. This dependability must be taken into account when selecting a best
approach, so that even though B2NSP was fastest in 19 out of the 33 problems, we must
recommend the 2LCor as the best method for road networks. If one can solve with two
methods in parallel, then we recommend both 2LCor and B2NSP be used, since B2NSP
performed best in most cases, but failed in others.

Table 8. Algorithm runtimes on road networks

Note: results indicated with a dash did not solve in the imposed time limit of 10 hours

time (sec) time (sec) time (sec) time (sec) time (sec) time (sec) time (sec) time (sec)
DC1 0.865 0.604 3.261 0.804 0.707 0.724 0.609 0.651
DC2 0.820 0.532 – 11.415 22.940 23.015 1.682 1.695
DC3 0.638 0.469 0.538 0.324 0.347 0.380 0.351 0.369
DC4 0.724 0.468 0.140 0.085 0.213 0.227 0.308 0.298
DC5 0.522 0.194 7.366 0.278 1.127 0.844 0.381 0.328
DC6 0.420 0.166 0.050 0.045 0.069 0.082 0.175 0.182
DC7 0.382 0.132 0.117 0.103 0.167 0.183 0.277 0.226
DC8 0.479 0.218 0.134 0.102 0.157 0.178 0.155 0.170
DC9 0.817 0.345 0.098 0.089 0.105 0.129 0.252 0.251
DC10 0.374 0.212 0.074 0.072 0.177 0.203 0.254 0.255
DC11 0.404 0.192 0.196 0.133 0.194 0.216 0.301 0.251
RI1 22.022 6.322 – – – – – –
RI2 15.588 5.825 – 848.618 – – 251.176 252.675
RI3 17.570 1.675 0.111 0.095 0.295 0.311 0.358 0.358
RI4 8.588 0.967 2.058 0.346 1.406 1.452 0.673 0.722
RI5 5.397 1.754 0.878 0.426 1.016 1.058 0.816 0.852
RI6 40.880 5.749 0.309 0.159 0.849 0.852 0.803 0.823
RI7 16.093 4.407 0.227 0.135 0.663 0.659 0.577 0.645
RI8 11.152 3.976 0.260 0.268 0.636 0.650 0.623 0.660
RI9 14.077 2.350 0.168 0.162 0.702 0.731 0.647 0.696
RI10 7.067 1.873 0.082 0.077 0.367 0.382 0.403 0.410
RI11 6.027 1.720 0.310 0.260 0.735 0.755 0.701 0.716
NJ1 922.217 214.033 – – – – – –
NJ2 697.355 112.949 – – – – 4503.596 4506.357
NJ3 301.700 107.596 – – – – – –
NJ4 514.996 46.948 0.927 0.498 5.475 5.416 4.989 5.164
NJ5 356.477 127.828 100.460 59.99 29.775 29.256 19.264 20.121
NJ6 492.078 133.286 – – – – – –
NJ7 579.252 47.396 – 45.849 2245.270 2252.835 24.421 25.142
NJ8 466.655 364.094 – – – – – –
NJ9 1149.296 85.207 82.830 10.294 17.733 18.219 8.649 9.035
NJ10 527.648 171.456 139.124 60.982 99.417 99.255 44.161 45.296
NJ11 925.478 17.286 0.405 0.294 3.663 3.843 3.444 3.677

2NSPLCor 2LCor B2NSP GWN2NSP GWA2NSP BGWN2NSP BGWA2NSP

19

Figure 8. Algorithm runtimes on road networks

Table 9. Number of enumerated paths on road networks

Note: results indicated with a dash did not solve in the imposed time limit of 10 hours

0.010$

0.100$

1.000$

10.000$

100.000$

1000.000$

10000.000$

DC
1$

DC
2$

DC
3$

DC
4$

DC
5$

DC
6$

DC
7$

DC
8$

DC
9$

DC
10

$

DC
11

$

RI
1$

RI
2$

RI
3$

RI
4$

RI
5$

RI
6$

RI
7$

RI
8$

RI
9$

RI
10
$

RI
11
$

N
J1
$

N
J2
$

N
J3
$

N
J4
$

N
J5
$

N
J6
$

N
J7
$

N
J8
$

N
J9
$

N
J1
0$

N
J1
1$

Se
co
nd

s(

Road(Network(

LCor$

2LCor$

2NSP$

B2NSP$

GWN2NSP$

GWA2NSP$

BGWN2NSP$

BGWA2NSP$

paths paths paths paths paths paths paths paths
DC1 n/a n/a 1,121,078 103,548 332,083 332,067 39,253 39,249
DC2 n/a n/a – 596,264 8,532,377 8,532,377 89,152 89,152
DC3 n/a n/a 72,904 2,237 18,886 18,885 1,333 1,332
DC4 n/a n/a 16,454 137 11,493 11,492 134 134
DC5 n/a n/a 2,805,278 736 978,939 978,939 578 578
DC6 n/a n/a 35 2 31 31 2 2
DC7 n/a n/a 124 8 124 124 8 8
DC8 n/a n/a 6,336 2,978 1,239 1,239 753 753
DC9 n/a n/a 3,054 21 2,068 2,068 21 21
DC10 n/a n/a 234 54 126 126 25 25
DC11 n/a n/a 10,104 425 7,139 7,139 325 325
RI1 n/a n/a – – – – – –
RI2 n/a n/a – 15,449,205 – – 13,742,893 13,742,893
RI3 n/a n/a 14 0 14 14 0 0
RI4 n/a n/a 94,443 42 92,098 92,098 29 29
RI5 n/a n/a 126,657 5,498 106,511 106,511 5,393 5,393
RI6 n/a n/a 5,604 162 1,601 1,601 112 112
RI7 n/a n/a 1,089 354 991 991 322 322
RI8 n/a n/a 32 3 32 32 3 3
RI9 n/a n/a 248 23 162 162 22 22
RI10 n/a n/a 22 4 21 21 4 4
RI11 n/a n/a 28,690 2,383 16,335 10,723 2,158 2,055
NJ1 n/a n/a – – – – – –
NJ2 n/a n/a – – – – 149,462,202 149,462,202
NJ3 n/a n/a – – – – – –
NJ4 n/a n/a 391,296 524 290,031 290,031 520 520
NJ5 n/a n/a 16,283,617 5,801,726 2,757,406 2,757,406 540,023 540,023
NJ6 n/a n/a – – – – – –
NJ7 n/a n/a – 9,184,415 561,307,649 561,228,326 2,772,362 2,772,272
NJ8 n/a n/a – – – – – –
NJ9 n/a n/a 68,732,270 98,455 8,434,103 8,434,063 87,969 87,964
NJ10 n/a n/a 15,834,882 1,935,798 9,162,035 9,162,023 854,286 854,284
NJ11 n/a n/a 93,634 2,602 85,376 85,376 2,416 2,416

LCor 2LCor BGWA2NSP2NSP B2NSP GWN2NSP GWA2NSP BGWN2NSP

20

V. Concluding Remarks

In this report, we proposed improvements to the Raith and Ehrgott (2009) near shortest
path enumeration algorithm (2NSP) for solving a biobjective shortest path problem. The
improvements tightened the upper bound on the enumeration via 1) a gateway node/arc
heuristic offering an initial candidate set of unsupported non-dominated solutions, 2)
eliminating the computation of paths that would be dominated by the supported non-
dominated solutions, and 3) a combination of both approaches. All of the enumeration
approaches as well as two label correcting methods were tested on three types of network
problems: terrain-based raster grid networks, NetMaker randomly generated graph
networks, and American statewide road networks. Raith and Ehrgott concluded that while
2NSP showed excellent promise in certain problem scenarios, that the exponential
behavior of the enumeration made certain problems take far longer to solve with 2NSP
than with labeling approaches. The additional bounds that we tested showed significant
computational improvement over the original 2NSP algorithm and often resulted in being
the fastest of all the methods tested, but they still displayed instances where the
combinatorial nature of enumeration resulted in exceedingly large computation times.
Overall then, we conclude that the labeling approaches are the most dependable
algorithms for solving a biobjective shortest path problem in a reasonable amount of
time.

Steiner and Radzik (2008) published some interesting work on enumeration approaches
for a biobjective minimum spanning tree (MST) problem. In their case, they used a k-
Best MST algorithm rather than a near-Best approach. The most interesting innovation of
their paper was that they tried solving for more than one adjacent BUSS region at a time,
since if one BUSS region is larger than another, then the algorithm may enumerate all
solutions in the smaller region during the process of enumerating for the larger region.
This approach for biobjective NSP enumeration may be of limited benefit since solution
times for large BUSS regions take exponentially more time to solve than smaller ones,
but it may be worth testing in future research. Perhaps this could breathe new life into the
k-best enumerative biobjective shortest path approach of (Coutinho-Rodrigues et al.
1999).

21

References

Byers, T. & M. Waterman, (1984). Determining all optimal and near-optimal solutions
when solving shortest path problems by dynamic programming. Operations
Research, 32, 1381-1384.

Carlyle, W.M. & R.K. Wood, (2005). Near-shortest and k-shortest simple paths.
Networks, 46, 98-109.

Cohon, J.L., R.L. Church & D.P. Sheer, (1979). Generating multiobjective trade-offs: An
algorithm for bicriterion problems. Water Resources Research, 15, 1001-1010.

Coutinho-Rodrigues, J., J. Climaco & J. Current, (1999). An interactive bi-objective
shortest path approach: Searching for unsupported nondominated solutions.
Computers & Operations Research, 26, 789-798.

Danna, E., E. Rothberg & C. Le Pape, (2005). Exploring relaxation induced
neighborhoods to improve mip solutions. Mathematical Programming, 102, 71-
90.

Goodchild, M., (1977). An evaluation of lattice solutions to the problem of corridor
location. Environment and Planning A, 9, 727-738.

Guerriero, F. & R. Musmanno, (2001). Label correcting methods to solve multicriteria
shortest path problems. Journal of Optimization Theory and Applications, 111,
589-613.

Hart, P., N. Nilsson & B. Raphael, (1968). A formal basis for heuristic determination of
minimum path cost. IEEE Transactions on on Systems Science and Cybernetics,
4, 198.

Hewitt, M., G.L. Nemhauser & M.W. Savelsbergh, (2010). Combining exact and
heuristic approaches for the capacitated fixed-charge network flow problem.
INFORMS Journal on Computing, 22, 314-325.

Huarng, F., P. Pulat & L. Shih, (1996). A computational comparison of some bicriterion
shortest path algorithms. Journal of the Chinese Institute of Industrial Engineers,
13, 121-125.

Medrano, F.A. & R.L. Church, (2014). Corridor location for infrastructure development:
A fast bi-objective shortest path method for approximating the pareto frontier.
International Regional Science Review, 37, 129-148.

Raith, A., (2010). Speed-up of labelling algorithms for biobjective shortest path
problems. Proceedings of the 45th annual conference of the ORSNZ. Auckland,
New Zealand, 313-322.

Raith, A. & M. Ehrgott, (2009). A comparison of solution strategies for biobjective
shortest path problems. Computers & Operations Research, 36, 1299-1331.

Skriver, A.J.V. & K.A. Andersen, (2000). A label correcting approach for solving
bicriterion shortest-path problems. Computers & Operations Research, 27, 507-
524.

22

Steiner, S. & T. Radzik, (2008). Computing all efficient solutions of the biobjective
minimum spanning tree problem. Computers & Operations Research, 35, 198-
211.

